fake-detection / main.py
kowalsky's picture
update
9f9d74d
raw
history blame
4.27 kB
from fastapi import FastAPI, WebSocket, WebSocketDisconnect, Request
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import JSONResponse, HTMLResponse
import sounddevice as sd
import numpy as np
import librosa
import joblib
import uvicorn
import threading
import asyncio
import logging
from typing import List
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
app = FastAPI()
@app.get("/", response_class=HTMLResponse)
async def get(request: Request):
logger.info("Saving the index page")
with open("templates/index.html") as f:
html_content = f.read()
return HTMLResponse(content=html_content, status_code=200)
@app.get("/health")
def health_check():
return {"status": "ok"}
# @app.get("/")
# def read_root():
# return {"status": "ok"}
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
duration = 2
sample_rate = 16000
is_detecting = False
detection_thread = None
model = joblib.load('models/xgb_test.pkl')
class ConnectionManager:
def __init__(self):
self.active_connections: List[WebSocket] = []
async def connect(self, websocket: WebSocket):
await websocket.accept()
self.active_connections.append(websocket)
def disconnect(self, websocket: WebSocket):
self.active_connections.remove(websocket)
async def send_message(self, message: str):
for connection in self.active_connections:
await connection.send_text(message)
manager = ConnectionManager()
def extract_features(audio):
sr = 16000
mfccs = librosa.feature.mfcc(y=audio, sr=sr, n_mfcc=13)
mfccs = np.mean(mfccs, axis=1)
chroma = librosa.feature.chroma_stft(y=audio, sr=sr)
chroma = np.mean(chroma, axis=1)
contrast = librosa.feature.spectral_contrast(y=audio, sr=sr)
contrast = np.mean(contrast, axis=1)
centroid = librosa.feature.spectral_centroid(y=audio, sr=sr)
centroid = np.mean(centroid, axis=1)
combined_features = np.hstack([mfccs, chroma, contrast, centroid])
return combined_features
async def audio_callback(indata, frames, time, status):
if status:
print(status)
audio_data = indata[:, 0]
print(f"Audio data: {audio_data[:10]}... (length: {len(audio_data)})")
logger.info(f"Audio data: {audio_data[:10]}... (length: {len(audio_data)})")
features = extract_features(audio_data)
features = features.reshape(1, -1)
prediction = model.predict(features)
is_fake = prediction[0]
print(f"Prediction: {is_fake}")
logger.info(f"Prediction: {is_fake}")
result = 'fake' if is_fake else 'real'
print(f"Detected {result} audio")
logger.info(f"Detected {result} audio")
await manager.send_message(result)
def detect_fake_audio():
global is_detecting
try:
with sd.InputStream(callback=lambda indata, frames, time, status: asyncio.run(audio_callback(indata, frames, time, status)), channels=1, samplerate=sample_rate, blocksize=int(sample_rate * duration)):
print("Listening...")
logger.info("Listening...")
while is_detecting:
sd.sleep(duration * 1000)
except Exception as e:
print(f"Exception: {str(e)}")
logger.info(f"Exception: {str(e)}")
@app.post("/start_detection")
async def start_detection():
global is_detecting, detection_thread
if not is_detecting:
is_detecting = True
detection_thread = threading.Thread(target=detect_fake_audio)
detection_thread.start()
return JSONResponse(content={'status': 'detection_started'})
@app.post("/stop_detection")
async def stop_detection():
global is_detecting, detection_thread
is_detecting = False
if detection_thread:
detection_thread.join()
return JSONResponse(content={'status': 'detection_stopped'})
@app.websocket("/ws")
async def websocket_endpoint(websocket: WebSocket):
await manager.connect(websocket)
try:
while True:
await websocket.receive_text()
except WebSocketDisconnect:
manager.disconnect(websocket)
if __name__ == '__main__':
uvicorn.run(app, host="0.0.0.0", port=7860)