multi_task_bert / model.py
kowalsky's picture
first commit
30e1793
from transformers import BertModel
import torch
import onnx
import pytorch_lightning as pl
import wandb
from metrics import MyAccuracy
from utils import num_unique_labels
from typing import Dict, Tuple, List, Optional
class MultiTaskBertModel(pl.LightningModule):
"""
Multi-task Bert model for Named Entity Recognition (NER) and Intent Classification
Args:
config (BertConfig): Bert model configuration.
dataset (Dict[str, Union[str, List[str]]]): A dictionary containing keys 'text', 'ner', and 'intent'.
"""
def __init__(self, config, dataset):
super().__init__()
self.num_ner_labels, self.num_intent_labels = num_unique_labels(dataset)
self.dropout = torch.nn.Dropout(config.hidden_dropout_prob)
self.model = BertModel(config=config)
self.ner_classifier = torch.nn.Linear(config.hidden_size, self.num_ner_labels)
self.intent_classifier = torch.nn.Linear(config.hidden_size, self.num_intent_labels)
# log hyperparameters
self.save_hyperparameters()
self.accuracy = MyAccuracy()
def forward(self, input_ids: torch.Tensor, attention_mask: Optional[torch.Tensor] = None) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Perform a forward pass through Multi-task Bert model.
Args:
input_ids (torch.Tensor, torch.shape: (batch, length_of_tokenized_sequences)): Input token IDs.
attention_mask (Optional[torch.Tensor]): Attention mask for input tokens.
Returns:
Tuple[torch.Tensor,torch.Tensor]: NER logits, Intent logits.
"""
outputs = self.model(input_ids=input_ids, attention_mask=attention_mask)
sequence_output = outputs[0]
sequence_output = self.dropout(sequence_output)
ner_logits = self.ner_classifier(sequence_output)
pooled_output = outputs[1]
pooled_output = self.dropout(pooled_output)
intent_logits = self.intent_classifier(pooled_output)
return ner_logits, intent_logits
def training_step(self: pl.LightningModule, batch, batch_idx: int) -> torch.Tensor:
"""
Perform a training step for the Multi-task BERT model.
Args:
batch: Input batch.
batch_idx (int): Index of the batch.
Returns:
torch.Tensor: Loss value
"""
loss, ner_logits, intent_logits, ner_labels, intent_labels = self._common_step(batch, batch_idx)
accuracy_ner = self.accuracy(ner_logits, ner_labels, self.num_ner_labels)
accuracy_intent = self.accuracy(intent_logits, intent_labels, self.num_intent_labels)
self.log_dict({'training_loss': loss, 'ner_accuracy': accuracy_ner, 'intent_accuracy': accuracy_intent},
on_step=False, on_epoch=True, prog_bar=True)
return loss
def on_validation_epoch_start(self):
self.validation_step_outputs_ner = []
self.validation_step_outputs_intent = []
def validation_step(self, batch, batch_idx: int) -> torch.Tensor:
"""
Perform a validation step for the Multi-task BERT model.
Args:
batch: Input batch.
batch_idx (int): Index of the batch.
Returns:
torch.Tensor: Loss value.
"""
loss, ner_logits, intent_logits, ner_labels, intent_labels = self._common_step(batch, batch_idx)
# self.log('val_loss', loss)
accuracy_ner = self.accuracy(ner_logits, ner_labels, self.num_ner_labels)
accuracy_intent = self.accuracy(intent_logits, intent_labels, self.num_intent_labels)
self.log_dict({'validation_loss': loss, 'val_ner_accuracy': accuracy_ner, 'val_intent_accuracy': accuracy_intent},
on_step=False, on_epoch=True, prog_bar=True)
self.validation_step_outputs_ner.append(ner_logits)
self.validation_step_outputs_intent.append(intent_logits)
return loss
def on_validation_epoch_end(self):
"""
Perform actions at the end of validation epoch to track the training process in WandB.
"""
validation_step_outputs_ner = self.validation_step_outputs_ner
validation_step_outputs_intent = self.validation_step_outputs_intent
dummy_input = torch.zeros((1, 128), device=self.device, dtype=torch.long)
model_filename = f"model_{str(self.global_step).zfill(5)}.onnx"
torch.onnx.export(self, dummy_input, model_filename)
artifact = wandb.Artifact(name="model.ckpt", type="model")
artifact.add_file(model_filename)
self.logger.experiment.log_artifact(artifact)
flattened_logits_ner = torch.flatten(torch.cat(validation_step_outputs_ner))
flattened_logits_intent = torch.flatten(torch.cat(validation_step_outputs_intent))
self.logger.experiment.log(
{"valid/ner_logits": wandb.Histogram(flattened_logits_ner.to('cpu')),
"valid/intent_logits": wandb.Histogram(flattened_logits_intent.to('cpu')),
"global_step": self.global_step}
)
def _common_step(self, batch, batch_idx):
"""
Common steps for both training and validation. Calculate loss for both NER and intent layer.
Returns:
Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
Combiner loss value, NER logits, intent logits, NER labels, intent labels.
"""
ids = batch['input_ids']
mask = batch['attention_mask']
ner_labels = batch['ner_labels']
intent_labels = batch['intent_labels']
ner_logits, intent_logits = self.forward(input_ids=ids, attention_mask=mask)
criterion = torch.nn.CrossEntropyLoss()
ner_loss = criterion(ner_logits.view(-1, self.num_ner_labels), ner_labels.view(-1).long())
intent_loss = criterion(intent_logits.view(-1, self.num_intent_labels), intent_labels.view(-1).long())
loss = ner_loss + intent_loss
return loss, ner_logits, intent_logits, ner_labels, intent_labels
def configure_optimizers(self):
optimizer = torch.optim.Adam(self.parameters(), lr=1e-5)
return optimizer