kowalsky commited on
Commit
d79be0d
·
1 Parent(s): e409316
Files changed (2) hide show
  1. app.py +12 -3
  2. bart.jpg +0 -0
app.py CHANGED
@@ -8,7 +8,7 @@ sys.path.append(project_dir)
8
 
9
  from model import MultiTaskBertModel
10
  from data_loader import load_dataset
11
- from utils import bert_config, tokenizer, intent_ids_to_labels, intent_labels_to_ids
12
 
13
  config = bert_config()
14
  dataset = load_dataset("training_dataset")
@@ -18,6 +18,9 @@ model.load_state_dict(torch.load("pytorch_model.bin"))
18
 
19
  model.eval()
20
 
 
 
 
21
  def predict(input_data):
22
 
23
  tok = tokenizer()
@@ -49,16 +52,22 @@ def predict(input_data):
49
  if not word.strip():
50
  continue
51
 
52
- aligned_predictions.append((word, int(prediction)))
53
 
54
  labels = intent_labels_to_ids()
55
  intent_labels = intent_ids_to_labels(labels)
 
56
 
57
  return f"Ner logits: {aligned_predictions}, Intent Label: {intent_labels}"
58
 
59
  title = "Multi Task Model"
60
  description = '''
61
- The model was trained to do NER and Intent classification for a scheduler
 
 
 
 
 
62
  '''
63
 
64
  gr.Interface(
 
8
 
9
  from model import MultiTaskBertModel
10
  from data_loader import load_dataset
11
+ from utils import bert_config, tokenizer, intent_ids_to_labels, intent_labels_to_ids, ner_labels_to_ids, ner_ids_to_labels
12
 
13
  config = bert_config()
14
  dataset = load_dataset("training_dataset")
 
18
 
19
  model.eval()
20
 
21
+ ner_label_to_id = ner_labels_to_ids()
22
+ ner_id_to_label = ner_ids_to_labels(ner_label_to_id)
23
+
24
  def predict(input_data):
25
 
26
  tok = tokenizer()
 
52
  if not word.strip():
53
  continue
54
 
55
+ aligned_predictions.append((word, ner_id_to_label[int(prediction)]))
56
 
57
  labels = intent_labels_to_ids()
58
  intent_labels = intent_ids_to_labels(labels)
59
+ intent_labels = intent_labels[int(intent_logits)]
60
 
61
  return f"Ner logits: {aligned_predictions}, Intent Label: {intent_labels}"
62
 
63
  title = "Multi Task Model"
64
  description = '''
65
+ This model is designed for a scheduler application, capable of handling various tasks such as setting
66
+ timers, scheduling meetings, appointments, and alarms. It provides Named Entity Recognition (NER) labels
67
+ to identify specific entities within the input text, along with an Intent label to determine the
68
+ overall task intention. The model's outputs facilitate efficient task management and organization,
69
+ enabling seamless interaction with the scheduler application.
70
+ <img src="bart.jpg" width=300px>
71
  '''
72
 
73
  gr.Interface(
bart.jpg ADDED