Spaces:
Sleeping
Sleeping
updated
Browse files
app.py
CHANGED
@@ -8,7 +8,7 @@ sys.path.append(project_dir)
|
|
8 |
|
9 |
from model import MultiTaskBertModel
|
10 |
from data_loader import load_dataset
|
11 |
-
from utils import bert_config, tokenizer, intent_ids_to_labels, intent_labels_to_ids
|
12 |
|
13 |
config = bert_config()
|
14 |
dataset = load_dataset("training_dataset")
|
@@ -18,6 +18,9 @@ model.load_state_dict(torch.load("pytorch_model.bin"))
|
|
18 |
|
19 |
model.eval()
|
20 |
|
|
|
|
|
|
|
21 |
def predict(input_data):
|
22 |
|
23 |
tok = tokenizer()
|
@@ -49,16 +52,22 @@ def predict(input_data):
|
|
49 |
if not word.strip():
|
50 |
continue
|
51 |
|
52 |
-
aligned_predictions.append((word, int(prediction)))
|
53 |
|
54 |
labels = intent_labels_to_ids()
|
55 |
intent_labels = intent_ids_to_labels(labels)
|
|
|
56 |
|
57 |
return f"Ner logits: {aligned_predictions}, Intent Label: {intent_labels}"
|
58 |
|
59 |
title = "Multi Task Model"
|
60 |
description = '''
|
61 |
-
|
|
|
|
|
|
|
|
|
|
|
62 |
'''
|
63 |
|
64 |
gr.Interface(
|
|
|
8 |
|
9 |
from model import MultiTaskBertModel
|
10 |
from data_loader import load_dataset
|
11 |
+
from utils import bert_config, tokenizer, intent_ids_to_labels, intent_labels_to_ids, ner_labels_to_ids, ner_ids_to_labels
|
12 |
|
13 |
config = bert_config()
|
14 |
dataset = load_dataset("training_dataset")
|
|
|
18 |
|
19 |
model.eval()
|
20 |
|
21 |
+
ner_label_to_id = ner_labels_to_ids()
|
22 |
+
ner_id_to_label = ner_ids_to_labels(ner_label_to_id)
|
23 |
+
|
24 |
def predict(input_data):
|
25 |
|
26 |
tok = tokenizer()
|
|
|
52 |
if not word.strip():
|
53 |
continue
|
54 |
|
55 |
+
aligned_predictions.append((word, ner_id_to_label[int(prediction)]))
|
56 |
|
57 |
labels = intent_labels_to_ids()
|
58 |
intent_labels = intent_ids_to_labels(labels)
|
59 |
+
intent_labels = intent_labels[int(intent_logits)]
|
60 |
|
61 |
return f"Ner logits: {aligned_predictions}, Intent Label: {intent_labels}"
|
62 |
|
63 |
title = "Multi Task Model"
|
64 |
description = '''
|
65 |
+
This model is designed for a scheduler application, capable of handling various tasks such as setting
|
66 |
+
timers, scheduling meetings, appointments, and alarms. It provides Named Entity Recognition (NER) labels
|
67 |
+
to identify specific entities within the input text, along with an Intent label to determine the
|
68 |
+
overall task intention. The model's outputs facilitate efficient task management and organization,
|
69 |
+
enabling seamless interaction with the scheduler application.
|
70 |
+
<img src="bart.jpg" width=300px>
|
71 |
'''
|
72 |
|
73 |
gr.Interface(
|
bart.jpg
ADDED
![]() |