kpawargi commited on
Commit
3904554
Β·
verified Β·
1 Parent(s): db71817

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +84 -84
app.py CHANGED
@@ -1,84 +1,84 @@
1
- import streamlit as st
2
- from PyPDF2 import PdfReader
3
- from langchain.vectorstores.cassandra import Cassandra
4
- from langchain.indexes.vectorstore import VectorStoreIndexWrapper
5
- from langchain.embeddings import HuggingFaceEmbeddings
6
- from langchain.llms import HuggingFaceHub
7
- from langchain.text_splitter import CharacterTextSplitter
8
- import cassio
9
- from dotenv import load_dotenv
10
- import os
11
-
12
- load_dotenv()
13
-
14
- ASTRA_DB_APPLICATION_TOKEN = os.getenv("ASTRA_DB_APPLICATION_TOKEN")
15
- ASTRA_DB_ID = os.getenv("ASTRA_DB_ID")
16
- HUGGINGFACEHUB_API_TOKEN = os.getenv("HUGGINGFACEHUB_API_TOKEN")
17
-
18
- # === Streamlit UI Setup ===
19
- st.set_page_config(page_title="Query PDF with Free Hugging Face Models", layout="wide")
20
- st.title("πŸ“„πŸ’¬ Query PDF using LangChain + AstraDB (Free Hugging Face Models)")
21
-
22
- # === File Upload ===
23
- uploaded_file = st.file_uploader("Upload your PDF", type=["pdf"])
24
-
25
- if uploaded_file:
26
- st.success("βœ… PDF uploaded successfully!")
27
- process_button = st.button("πŸ”„ Process PDF")
28
-
29
- if process_button:
30
- # Initialize AstraDB
31
- cassio.init(token=ASTRA_DB_APPLICATION_TOKEN, database_id=ASTRA_DB_ID)
32
-
33
- # Read PDF contents
34
- pdf_reader = PdfReader(uploaded_file)
35
- raw_text = ""
36
- for page in pdf_reader.pages:
37
- content = page.extract_text()
38
- if content:
39
- raw_text += content
40
-
41
- # Split text into chunks
42
- text_splitter = CharacterTextSplitter(
43
- separator="\n", chunk_size=800, chunk_overlap=200, length_function=len
44
- )
45
- texts = text_splitter.split_text(raw_text)
46
-
47
- # === Embeddings ===
48
- embedding = HuggingFaceEmbeddings(
49
- model_name="sentence-transformers/all-MiniLM-L6-v2"
50
- )
51
-
52
- # === Hugging Face LLM ===
53
- llm = HuggingFaceHub(
54
- repo_id="mistralai/Mistral-7B-Instruct-v0.1",
55
- huggingfacehub_api_token=HUGGINGFACEHUB_API_TOKEN,
56
- model_kwargs={"temperature": 0.5, "max_new_tokens": 512}
57
- )
58
-
59
- # === Create vector store and index ===
60
- vector_store = Cassandra(
61
- embedding=embedding,
62
- table_name=TABLE_NAME,
63
- session=None,
64
- keyspace=None,
65
- )
66
- vector_store.add_texts(texts[:50])
67
- st.success(f"πŸ“š {len(texts[:50])} chunks embedded and stored in AstraDB.")
68
-
69
- astra_vector_index = VectorStoreIndexWrapper(vectorstore=vector_store)
70
-
71
- # === Ask Questions ===
72
- st.header("πŸ€– Ask a question about your PDF")
73
- user_question = st.text_input("πŸ’¬ Type your question here")
74
-
75
- if user_question:
76
- with st.spinner("Thinking..."):
77
- answer = astra_vector_index.query(user_question, llm=llm).strip()
78
- st.markdown(f"### 🧠 Answer:\n{answer}")
79
-
80
- st.markdown("### πŸ” Top Relevant Chunks")
81
- docs = vector_store.similarity_search_with_score(user_question, k=4)
82
- for i, (doc, score) in enumerate(docs, 1):
83
- st.markdown(f"**Chunk {i}** β€” Relevance Score: `{score:.4f}`")
84
- st.code(doc.page_content[:500], language="markdown")
 
1
+ import streamlit as st
2
+ from PyPDF2 import PdfReader
3
+ from langchain.vectorstores.cassandra import Cassandra
4
+ from langchain.indexes.vectorstore import VectorStoreIndexWrapper
5
+ from langchain.embeddings import HuggingFaceEmbeddings
6
+ from langchain.llms import HuggingFaceHub
7
+ from langchain.text_splitter import CharacterTextSplitter
8
+ import cassio
9
+ from dotenv import load_dotenv
10
+ import os
11
+
12
+ load_dotenv()
13
+
14
+ ASTRA_DB_APPLICATION_TOKEN = os.getenv("ASTRA_DB_APPLICATION_TOKEN")
15
+ ASTRA_DB_ID = os.getenv("ASTRA_DB_ID")
16
+ HUGGINGFACEHUB_API_TOKEN = os.getenv("HUGGINGFACEHUB_API_TOKEN")
17
+
18
+ # === Streamlit UI Setup ===
19
+ st.set_page_config(page_title="Query PDF with Free Hugging Face Models", layout="wide")
20
+ st.title("πŸ“„πŸ’¬ Query PDF using LangChain + AstraDB (Free Hugging Face Models)")
21
+
22
+ # === File Upload ===
23
+ uploaded_file = st.file_uploader("Upload your PDF", type=["pdf"])
24
+
25
+ if uploaded_file:
26
+ st.success("βœ… PDF uploaded successfully!")
27
+ process_button = st.button("πŸ”„ Process PDF")
28
+
29
+ if process_button:
30
+ # Initialize AstraDB
31
+ cassio.init(token=ASTRA_DB_APPLICATION_TOKEN, database_id=ASTRA_DB_ID)
32
+
33
+ # Read PDF contents
34
+ pdf_reader = PdfReader(uploaded_file)
35
+ raw_text = ""
36
+ for page in pdf_reader.pages:
37
+ content = page.extract_text()
38
+ if content:
39
+ raw_text += content
40
+
41
+ # Split text into chunks
42
+ text_splitter = CharacterTextSplitter(
43
+ separator="\n", chunk_size=800, chunk_overlap=200, length_function=len
44
+ )
45
+ texts = text_splitter.split_text(raw_text)
46
+
47
+ # === Embeddings ===
48
+ embedding = HuggingFaceEmbeddings(
49
+ model_name="sentence-transformers/all-MiniLM-L6-v2"
50
+ )
51
+
52
+ # === Hugging Face LLM ===
53
+ llm = HuggingFaceHub(
54
+ repo_id="mistralai/Mistral-7B-Instruct-v0.1",
55
+ huggingfacehub_api_token=HUGGINGFACEHUB_API_TOKEN,
56
+ model_kwargs={"temperature": 0.5, "max_new_tokens": 512}
57
+ )
58
+
59
+ # === Create vector store and index ===
60
+ vector_store = Cassandra(
61
+ embedding=embedding,
62
+ table_name="qa_mini_demo",
63
+ session=None,
64
+ keyspace=None,
65
+ )
66
+ vector_store.add_texts(texts[:50])
67
+ st.success(f"πŸ“š {len(texts[:50])} chunks embedded and stored in AstraDB.")
68
+
69
+ astra_vector_index = VectorStoreIndexWrapper(vectorstore=vector_store)
70
+
71
+ # === Ask Questions ===
72
+ st.header("πŸ€– Ask a question about your PDF")
73
+ user_question = st.text_input("πŸ’¬ Type your question here")
74
+
75
+ if user_question:
76
+ with st.spinner("Thinking..."):
77
+ answer = astra_vector_index.query(user_question, llm=llm).strip()
78
+ st.markdown(f"### 🧠 Answer:\n{answer}")
79
+
80
+ st.markdown("### πŸ” Top Relevant Chunks")
81
+ docs = vector_store.similarity_search_with_score(user_question, k=4)
82
+ for i, (doc, score) in enumerate(docs, 1):
83
+ st.markdown(f"**Chunk {i}** β€” Relevance Score: `{score:.4f}`")
84
+ st.code(doc.page_content[:500], language="markdown")