File size: 35,984 Bytes
2d6d7db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
{
  "cells": [
    {
      "cell_type": "code",
      "execution_count": 17,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "collapsed": true,
        "id": "MCiLSwoWQK7z",
        "outputId": "5efbb6bc-0e2d-4df7-a5b2-36f4448960a8"
      },
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "Collecting git+https://github.com/EleutherAI/lm-evaluation-harness.git\n",
            "  Cloning https://github.com/EleutherAI/lm-evaluation-harness.git to /tmp/pip-req-build-j2xmmhxh\n",
            "  Running command git clone --filter=blob:none --quiet https://github.com/EleutherAI/lm-evaluation-harness.git /tmp/pip-req-build-j2xmmhxh\n",
            "  Resolved https://github.com/EleutherAI/lm-evaluation-harness.git to commit b4cd85d406938f94ee5d451840a0d69bbda27006\n",
            "  Installing build dependencies ... \u001b[?25l\u001b[?25hdone\n",
            "  Getting requirements to build wheel ... \u001b[?25l\u001b[?25hdone\n",
            "  Preparing metadata (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n",
            "Requirement already satisfied: accelerate>=0.21.0 in /usr/local/lib/python3.10/dist-packages (from lm_eval==0.4.2) (0.30.1)\n",
            "Requirement already satisfied: evaluate in /usr/local/lib/python3.10/dist-packages (from lm_eval==0.4.2) (0.4.2)\n",
            "Requirement already satisfied: datasets>=2.16.0 in /usr/local/lib/python3.10/dist-packages (from lm_eval==0.4.2) (2.19.1)\n",
            "Requirement already satisfied: jsonlines in /usr/local/lib/python3.10/dist-packages (from lm_eval==0.4.2) (4.0.0)\n",
            "Requirement already satisfied: numexpr in /usr/local/lib/python3.10/dist-packages (from lm_eval==0.4.2) (2.10.0)\n",
            "Requirement already satisfied: peft>=0.2.0 in /usr/local/lib/python3.10/dist-packages (from lm_eval==0.4.2) (0.11.1)\n",
            "Requirement already satisfied: pybind11>=2.6.2 in /usr/local/lib/python3.10/dist-packages (from lm_eval==0.4.2) (2.12.0)\n",
            "Requirement already satisfied: pytablewriter in /usr/local/lib/python3.10/dist-packages (from lm_eval==0.4.2) (1.2.0)\n",
            "Requirement already satisfied: rouge-score>=0.0.4 in /usr/local/lib/python3.10/dist-packages (from lm_eval==0.4.2) (0.1.2)\n",
            "Requirement already satisfied: sacrebleu>=1.5.0 in /usr/local/lib/python3.10/dist-packages (from lm_eval==0.4.2) (2.4.2)\n",
            "Requirement already satisfied: scikit-learn>=0.24.1 in /usr/local/lib/python3.10/dist-packages (from lm_eval==0.4.2) (1.2.2)\n",
            "Requirement already satisfied: sqlitedict in /usr/local/lib/python3.10/dist-packages (from lm_eval==0.4.2) (2.1.0)\n",
            "Requirement already satisfied: torch>=1.8 in /usr/local/lib/python3.10/dist-packages (from lm_eval==0.4.2) (2.3.0+cu121)\n",
            "Requirement already satisfied: tqdm-multiprocess in /usr/local/lib/python3.10/dist-packages (from lm_eval==0.4.2) (0.0.11)\n",
            "Requirement already satisfied: transformers>=4.1 in /usr/local/lib/python3.10/dist-packages (from lm_eval==0.4.2) (4.41.1)\n",
            "Requirement already satisfied: zstandard in /usr/local/lib/python3.10/dist-packages (from lm_eval==0.4.2) (0.22.0)\n",
            "Requirement already satisfied: dill in /usr/local/lib/python3.10/dist-packages (from lm_eval==0.4.2) (0.3.8)\n",
            "Requirement already satisfied: word2number in /usr/local/lib/python3.10/dist-packages (from lm_eval==0.4.2) (1.1)\n",
            "Requirement already satisfied: more-itertools in /usr/local/lib/python3.10/dist-packages (from lm_eval==0.4.2) (10.1.0)\n",
            "Requirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.10/dist-packages (from accelerate>=0.21.0->lm_eval==0.4.2) (1.25.2)\n",
            "Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10/dist-packages (from accelerate>=0.21.0->lm_eval==0.4.2) (24.0)\n",
            "Requirement already satisfied: psutil in /usr/local/lib/python3.10/dist-packages (from accelerate>=0.21.0->lm_eval==0.4.2) (5.9.5)\n",
            "Requirement already satisfied: pyyaml in /usr/local/lib/python3.10/dist-packages (from accelerate>=0.21.0->lm_eval==0.4.2) (6.0.1)\n",
            "Requirement already satisfied: huggingface-hub in /usr/local/lib/python3.10/dist-packages (from accelerate>=0.21.0->lm_eval==0.4.2) (0.23.1)\n",
            "Requirement already satisfied: safetensors>=0.3.1 in /usr/local/lib/python3.10/dist-packages (from accelerate>=0.21.0->lm_eval==0.4.2) (0.4.3)\n",
            "Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from datasets>=2.16.0->lm_eval==0.4.2) (3.14.0)\n",
            "Requirement already satisfied: pyarrow>=12.0.0 in /usr/local/lib/python3.10/dist-packages (from datasets>=2.16.0->lm_eval==0.4.2) (14.0.2)\n",
            "Requirement already satisfied: pyarrow-hotfix in /usr/local/lib/python3.10/dist-packages (from datasets>=2.16.0->lm_eval==0.4.2) (0.6)\n",
            "Requirement already satisfied: pandas in /usr/local/lib/python3.10/dist-packages (from datasets>=2.16.0->lm_eval==0.4.2) (2.0.3)\n",
            "Requirement already satisfied: requests>=2.19.0 in /usr/local/lib/python3.10/dist-packages (from datasets>=2.16.0->lm_eval==0.4.2) (2.31.0)\n",
            "Requirement already satisfied: tqdm>=4.62.1 in /usr/local/lib/python3.10/dist-packages (from datasets>=2.16.0->lm_eval==0.4.2) (4.66.4)\n",
            "Requirement already satisfied: xxhash in /usr/local/lib/python3.10/dist-packages (from datasets>=2.16.0->lm_eval==0.4.2) (3.4.1)\n",
            "Requirement already satisfied: multiprocess in /usr/local/lib/python3.10/dist-packages (from datasets>=2.16.0->lm_eval==0.4.2) (0.70.16)\n",
            "Requirement already satisfied: fsspec[http]<=2024.3.1,>=2023.1.0 in /usr/local/lib/python3.10/dist-packages (from datasets>=2.16.0->lm_eval==0.4.2) (2023.6.0)\n",
            "Requirement already satisfied: aiohttp in /usr/local/lib/python3.10/dist-packages (from datasets>=2.16.0->lm_eval==0.4.2) (3.9.5)\n",
            "Requirement already satisfied: absl-py in /usr/local/lib/python3.10/dist-packages (from rouge-score>=0.0.4->lm_eval==0.4.2) (1.4.0)\n",
            "Requirement already satisfied: nltk in /usr/local/lib/python3.10/dist-packages (from rouge-score>=0.0.4->lm_eval==0.4.2) (3.8.1)\n",
            "Requirement already satisfied: six>=1.14.0 in /usr/local/lib/python3.10/dist-packages (from rouge-score>=0.0.4->lm_eval==0.4.2) (1.16.0)\n",
            "Requirement already satisfied: portalocker in /usr/local/lib/python3.10/dist-packages (from sacrebleu>=1.5.0->lm_eval==0.4.2) (2.8.2)\n",
            "Requirement already satisfied: regex in /usr/local/lib/python3.10/dist-packages (from sacrebleu>=1.5.0->lm_eval==0.4.2) (2024.5.15)\n",
            "Requirement already satisfied: tabulate>=0.8.9 in /usr/local/lib/python3.10/dist-packages (from sacrebleu>=1.5.0->lm_eval==0.4.2) (0.9.0)\n",
            "Requirement already satisfied: colorama in /usr/local/lib/python3.10/dist-packages (from sacrebleu>=1.5.0->lm_eval==0.4.2) (0.4.6)\n",
            "Requirement already satisfied: lxml in /usr/local/lib/python3.10/dist-packages (from sacrebleu>=1.5.0->lm_eval==0.4.2) (4.9.4)\n",
            "Requirement already satisfied: scipy>=1.3.2 in /usr/local/lib/python3.10/dist-packages (from scikit-learn>=0.24.1->lm_eval==0.4.2) (1.11.4)\n",
            "Requirement already satisfied: joblib>=1.1.1 in /usr/local/lib/python3.10/dist-packages (from scikit-learn>=0.24.1->lm_eval==0.4.2) (1.4.2)\n",
            "Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn>=0.24.1->lm_eval==0.4.2) (3.5.0)\n",
            "Requirement already satisfied: typing-extensions>=4.8.0 in /usr/local/lib/python3.10/dist-packages (from torch>=1.8->lm_eval==0.4.2) (4.11.0)\n",
            "Requirement already satisfied: sympy in /usr/local/lib/python3.10/dist-packages (from torch>=1.8->lm_eval==0.4.2) (1.12)\n",
            "Requirement already satisfied: networkx in /usr/local/lib/python3.10/dist-packages (from torch>=1.8->lm_eval==0.4.2) (3.3)\n",
            "Requirement already satisfied: jinja2 in /usr/local/lib/python3.10/dist-packages (from torch>=1.8->lm_eval==0.4.2) (3.1.4)\n",
            "Requirement already satisfied: nvidia-cuda-nvrtc-cu12==12.1.105 in /usr/local/lib/python3.10/dist-packages (from torch>=1.8->lm_eval==0.4.2) (12.1.105)\n",
            "Requirement already satisfied: nvidia-cuda-runtime-cu12==12.1.105 in /usr/local/lib/python3.10/dist-packages (from torch>=1.8->lm_eval==0.4.2) (12.1.105)\n",
            "Requirement already satisfied: nvidia-cuda-cupti-cu12==12.1.105 in /usr/local/lib/python3.10/dist-packages (from torch>=1.8->lm_eval==0.4.2) (12.1.105)\n",
            "Requirement already satisfied: nvidia-cudnn-cu12==8.9.2.26 in /usr/local/lib/python3.10/dist-packages (from torch>=1.8->lm_eval==0.4.2) (8.9.2.26)\n",
            "Requirement already satisfied: nvidia-cublas-cu12==12.1.3.1 in /usr/local/lib/python3.10/dist-packages (from torch>=1.8->lm_eval==0.4.2) (12.1.3.1)\n",
            "Requirement already satisfied: nvidia-cufft-cu12==11.0.2.54 in /usr/local/lib/python3.10/dist-packages (from torch>=1.8->lm_eval==0.4.2) (11.0.2.54)\n",
            "Requirement already satisfied: nvidia-curand-cu12==10.3.2.106 in /usr/local/lib/python3.10/dist-packages (from torch>=1.8->lm_eval==0.4.2) (10.3.2.106)\n",
            "Requirement already satisfied: nvidia-cusolver-cu12==11.4.5.107 in /usr/local/lib/python3.10/dist-packages (from torch>=1.8->lm_eval==0.4.2) (11.4.5.107)\n",
            "Requirement already satisfied: nvidia-cusparse-cu12==12.1.0.106 in /usr/local/lib/python3.10/dist-packages (from torch>=1.8->lm_eval==0.4.2) (12.1.0.106)\n",
            "Requirement already satisfied: nvidia-nccl-cu12==2.20.5 in /usr/local/lib/python3.10/dist-packages (from torch>=1.8->lm_eval==0.4.2) (2.20.5)\n",
            "Requirement already satisfied: nvidia-nvtx-cu12==12.1.105 in /usr/local/lib/python3.10/dist-packages (from torch>=1.8->lm_eval==0.4.2) (12.1.105)\n",
            "Requirement already satisfied: triton==2.3.0 in /usr/local/lib/python3.10/dist-packages (from torch>=1.8->lm_eval==0.4.2) (2.3.0)\n",
            "Requirement already satisfied: nvidia-nvjitlink-cu12 in /usr/local/lib/python3.10/dist-packages (from nvidia-cusolver-cu12==11.4.5.107->torch>=1.8->lm_eval==0.4.2) (12.5.40)\n",
            "Requirement already satisfied: tokenizers<0.20,>=0.19 in /usr/local/lib/python3.10/dist-packages (from transformers>=4.1->lm_eval==0.4.2) (0.19.1)\n",
            "Requirement already satisfied: attrs>=19.2.0 in /usr/local/lib/python3.10/dist-packages (from jsonlines->lm_eval==0.4.2) (23.2.0)\n",
            "Requirement already satisfied: setuptools>=38.3.0 in /usr/local/lib/python3.10/dist-packages (from pytablewriter->lm_eval==0.4.2) (67.7.2)\n",
            "Requirement already satisfied: DataProperty<2,>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from pytablewriter->lm_eval==0.4.2) (1.0.1)\n",
            "Requirement already satisfied: mbstrdecoder<2,>=1.0.0 in /usr/local/lib/python3.10/dist-packages (from pytablewriter->lm_eval==0.4.2) (1.1.3)\n",
            "Requirement already satisfied: pathvalidate<4,>=2.3.0 in /usr/local/lib/python3.10/dist-packages (from pytablewriter->lm_eval==0.4.2) (3.2.0)\n",
            "Requirement already satisfied: tabledata<2,>=1.3.1 in /usr/local/lib/python3.10/dist-packages (from pytablewriter->lm_eval==0.4.2) (1.3.3)\n",
            "Requirement already satisfied: tcolorpy<1,>=0.0.5 in /usr/local/lib/python3.10/dist-packages (from pytablewriter->lm_eval==0.4.2) (0.1.6)\n",
            "Requirement already satisfied: typepy[datetime]<2,>=1.3.2 in /usr/local/lib/python3.10/dist-packages (from pytablewriter->lm_eval==0.4.2) (1.3.2)\n",
            "Requirement already satisfied: aiosignal>=1.1.2 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets>=2.16.0->lm_eval==0.4.2) (1.3.1)\n",
            "Requirement already satisfied: frozenlist>=1.1.1 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets>=2.16.0->lm_eval==0.4.2) (1.4.1)\n",
            "Requirement already satisfied: multidict<7.0,>=4.5 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets>=2.16.0->lm_eval==0.4.2) (6.0.5)\n",
            "Requirement already satisfied: yarl<2.0,>=1.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets>=2.16.0->lm_eval==0.4.2) (1.9.4)\n",
            "Requirement already satisfied: async-timeout<5.0,>=4.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets>=2.16.0->lm_eval==0.4.2) (4.0.3)\n",
            "Requirement already satisfied: chardet<6,>=3.0.4 in /usr/local/lib/python3.10/dist-packages (from mbstrdecoder<2,>=1.0.0->pytablewriter->lm_eval==0.4.2) (5.2.0)\n",
            "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests>=2.19.0->datasets>=2.16.0->lm_eval==0.4.2) (3.3.2)\n",
            "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests>=2.19.0->datasets>=2.16.0->lm_eval==0.4.2) (3.7)\n",
            "Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests>=2.19.0->datasets>=2.16.0->lm_eval==0.4.2) (2.0.7)\n",
            "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests>=2.19.0->datasets>=2.16.0->lm_eval==0.4.2) (2024.2.2)\n",
            "Requirement already satisfied: python-dateutil<3.0.0,>=2.8.0 in /usr/local/lib/python3.10/dist-packages (from typepy[datetime]<2,>=1.3.2->pytablewriter->lm_eval==0.4.2) (2.8.2)\n",
            "Requirement already satisfied: pytz>=2018.9 in /usr/local/lib/python3.10/dist-packages (from typepy[datetime]<2,>=1.3.2->pytablewriter->lm_eval==0.4.2) (2023.4)\n",
            "Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10/dist-packages (from jinja2->torch>=1.8->lm_eval==0.4.2) (2.1.5)\n",
            "Requirement already satisfied: click in /usr/local/lib/python3.10/dist-packages (from nltk->rouge-score>=0.0.4->lm_eval==0.4.2) (8.1.7)\n",
            "Requirement already satisfied: tzdata>=2022.1 in /usr/local/lib/python3.10/dist-packages (from pandas->datasets>=2.16.0->lm_eval==0.4.2) (2024.1)\n",
            "Requirement already satisfied: mpmath>=0.19 in /usr/local/lib/python3.10/dist-packages (from sympy->torch>=1.8->lm_eval==0.4.2) (1.3.0)\n"
          ]
        }
      ],
      "source": [
        "# Install LM-Eval\n",
        "!pip install git+https://github.com/EleutherAI/lm-evaluation-harness.git"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 18,
      "metadata": {
        "id": "JbpEeufJQnTr"
      },
      "outputs": [],
      "source": [
        "from lm_eval import api"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 19,
      "metadata": {
        "id": "hgzFSI8hH59H"
      },
      "outputs": [],
      "source": [
        "import os\n",
        "\n",
        "HF_TOKEN = \"\"  # generate a user access token from https://huggingface.co/settings/tokens and copy it here\n",
        "os.environ[\"HF_TOKEN\"] = HF_TOKEN"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "Knxt2sGYyBrY"
      },
      "source": [
        "# Configure Evaluation\n"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 20,
      "metadata": {
        "id": "9WS47SmXyQyC"
      },
      "outputs": [],
      "source": [
        "YAML_boolq_string = \"\"\"\n",
        "task: demo_boolq\n",
        "dataset_path: super_glue\n",
        "dataset_name: boolq\n",
        "output_type: multiple_choice\n",
        "training_split: train\n",
        "validation_split: validation\n",
        "doc_to_text: \"{{passage}}\\nQuestion: {{question}}?\\nAnswer:\"\n",
        "doc_to_target: label\n",
        "doc_to_choice: [\"no\", \"yes\"]\n",
        "should_decontaminate: true\n",
        "doc_to_decontamination_query: passage\n",
        "metric_list:\n",
        "  - metric: acc\n",
        "  - metric: bleu\n",
        "  - metric: f1\n",
        "\"\"\"\n",
        "with open(\"boolq.yaml\", \"w\") as f:\n",
        "    f.write(YAML_boolq_string)"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 21,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "HEqYUlYvGuhd",
        "outputId": "fd36c9ca-fdc3-4567-cce7-6818f9ff69a8"
      },
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "2024-05-30 06:24:29.336227: E external/local_xla/xla/stream_executor/cuda/cuda_dnn.cc:9261] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered\n",
            "2024-05-30 06:24:29.336292: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:607] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered\n",
            "2024-05-30 06:24:29.338088: E external/local_xla/xla/stream_executor/cuda/cuda_blas.cc:1515] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n",
            "2024-05-30 06:24:30.997165: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT\n",
            "2024-05-30:06:24:35,343 INFO     [__main__.py:254] Verbosity set to INFO\n",
            "2024-05-30:06:24:35,343 INFO     [__main__.py:277] Including path: ./\n",
            "2024-05-30:06:24:43,787 WARNING  [__main__.py:293]  --limit SHOULD ONLY BE USED FOR TESTING.REAL METRICS SHOULD NOT BE COMPUTED USING LIMIT.\n",
            "2024-05-30:06:24:43,788 INFO     [__main__.py:344] Selected Tasks: ['demo_boolq']\n",
            "2024-05-30:06:24:43,790 INFO     [evaluator.py:141] Setting random seed to 0 | Setting numpy seed to 1234 | Setting torch manual seed to 1234\n",
            "2024-05-30:06:24:43,790 INFO     [evaluator.py:178] Initializing hf model, with arguments: {'pretrained': 'EleutherAI/pythia-2.8b'}\n",
            "2024-05-30:06:24:43,812 INFO     [huggingface.py:165] Using device 'cuda'\n",
            "/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py:1132: FutureWarning: `resume_download` is deprecated and will be removed in version 1.0.0. Downloads always resume when possible. If you want to force a new download, use `force_download=True`.\n",
            "  warnings.warn(\n",
            "Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.\n",
            "2024-05-30:06:25:03,269 WARNING  [task.py:774] [Task: demo_boolq] metric acc is defined, but aggregation is not. using default aggregation=mean\n",
            "2024-05-30:06:25:03,269 WARNING  [task.py:786] [Task: demo_boolq] metric acc is defined, but higher_is_better is not. using default higher_is_better=True\n",
            "2024-05-30:06:25:03,269 WARNING  [task.py:774] [Task: demo_boolq] metric bleu is defined, but aggregation is not. using default aggregation=bleu\n",
            "2024-05-30:06:25:03,269 WARNING  [task.py:786] [Task: demo_boolq] metric bleu is defined, but higher_is_better is not. using default higher_is_better=True\n",
            "2024-05-30:06:25:03,269 WARNING  [task.py:774] [Task: demo_boolq] metric f1 is defined, but aggregation is not. using default aggregation=f1\n",
            "2024-05-30:06:25:03,269 WARNING  [task.py:786] [Task: demo_boolq] metric f1 is defined, but higher_is_better is not. using default higher_is_better=True\n",
            "/usr/local/lib/python3.10/dist-packages/datasets/load.py:1486: FutureWarning: The repository for super_glue contains custom code which must be executed to correctly load the dataset. You can inspect the repository content at https://hf.co/datasets/super_glue\n",
            "You can avoid this message in future by passing the argument `trust_remote_code=True`.\n",
            "Passing `trust_remote_code=True` will be mandatory to load this dataset from the next major release of `datasets`.\n",
            "  warnings.warn(\n",
            "2024-05-30:06:25:06,006 INFO     [task.py:398] Building contexts for demo_boolq on rank 0...\n",
            "100% 20/20 [00:00<00:00, 1266.87it/s]\n",
            "2024-05-30:06:25:06,024 INFO     [evaluator.py:395] Running loglikelihood requests\n",
            "Running loglikelihood requests: 100% 40/40 [00:02<00:00, 14.95it/s]\n",
            "/usr/lib/python3.10/multiprocessing/popen_fork.py:66: RuntimeWarning: os.fork() was called. os.fork() is incompatible with multithreaded code, and JAX is multithreaded, so this will likely lead to a deadlock.\n",
            "  self.pid = os.fork()\n",
            "bootstrapping for stddev: f1_score\n",
            "100% 100/100 [01:59<00:00,  1.20s/it]\n",
            "fatal: not a git repository (or any of the parent directories): .git\n",
            "2024-05-30:06:27:09,982 INFO     [evaluation_tracker.py:132] Saving results aggregated\n",
            "2024-05-30:06:27:09,983 INFO     [evaluation_tracker.py:203] Saving samples results\n",
            "hf (pretrained=EleutherAI/pythia-2.8b), gen_kwargs: (None), limit: 20.0, num_fewshot: None, batch_size: 1\n",
            "|  Tasks   |Version|Filter|n-shot|Metric|Value |   |Stderr|\n",
            "|----------|-------|------|-----:|------|-----:|---|-----:|\n",
            "|demo_boolq|Yaml   |none  |     0|acc   |0.7500|±  |0.0993|\n",
            "|          |       |none  |     0|f1    |0.8485|±  |0.0690|\n",
            "\n"
          ]
        }
      ],
      "source": [
        "!lm_eval \\\n",
        "    --model hf \\\n",
        "    --model_args pretrained=EleutherAI/pythia-2.8b \\\n",
        "    --include_path ./ \\\n",
        "    --tasks demo_boolq \\\n",
        "    --output output/ \\\n",
        "    --limit 20 \\\n",
        "    --log_samples"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 22,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "HDyMUJieyX-S",
        "outputId": "2307e7c9-fbcc-467e-8780-107924666e54"
      },
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "2024-05-30 06:27:14.929536: E external/local_xla/xla/stream_executor/cuda/cuda_dnn.cc:9261] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered\n",
            "2024-05-30 06:27:14.929584: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:607] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered\n",
            "2024-05-30 06:27:14.930843: E external/local_xla/xla/stream_executor/cuda/cuda_blas.cc:1515] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n",
            "2024-05-30 06:27:16.588649: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT\n",
            "2024-05-30:06:27:23,447 INFO     [__main__.py:254] Verbosity set to INFO\n",
            "2024-05-30:06:27:23,447 INFO     [__main__.py:277] Including path: ./\n",
            "2024-05-30:06:27:29,860 WARNING  [__main__.py:293]  --limit SHOULD ONLY BE USED FOR TESTING.REAL METRICS SHOULD NOT BE COMPUTED USING LIMIT.\n",
            "2024-05-30:06:27:29,861 INFO     [__main__.py:344] Selected Tasks: ['demo_boolq']\n",
            "2024-05-30:06:27:29,863 INFO     [evaluator.py:141] Setting random seed to 0 | Setting numpy seed to 1234 | Setting torch manual seed to 1234\n",
            "2024-05-30:06:27:29,863 INFO     [evaluator.py:178] Initializing hf model, with arguments: {'pretrained': 'mistralai/Mistral-7B-v0.1'}\n",
            "2024-05-30:06:27:29,885 INFO     [huggingface.py:165] Using device 'cuda'\n",
            "/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py:1132: FutureWarning: `resume_download` is deprecated and will be removed in version 1.0.0. Downloads always resume when possible. If you want to force a new download, use `force_download=True`.\n",
            "  warnings.warn(\n",
            "Loading checkpoint shards: 100% 2/2 [01:01<00:00, 30.54s/it]\n",
            "2024-05-30:06:28:33,160 WARNING  [task.py:774] [Task: demo_boolq] metric acc is defined, but aggregation is not. using default aggregation=mean\n",
            "2024-05-30:06:28:33,160 WARNING  [task.py:786] [Task: demo_boolq] metric acc is defined, but higher_is_better is not. using default higher_is_better=True\n",
            "2024-05-30:06:28:33,160 WARNING  [task.py:774] [Task: demo_boolq] metric bleu is defined, but aggregation is not. using default aggregation=bleu\n",
            "2024-05-30:06:28:33,160 WARNING  [task.py:786] [Task: demo_boolq] metric bleu is defined, but higher_is_better is not. using default higher_is_better=True\n",
            "2024-05-30:06:28:33,160 WARNING  [task.py:774] [Task: demo_boolq] metric f1 is defined, but aggregation is not. using default aggregation=f1\n",
            "2024-05-30:06:28:33,160 WARNING  [task.py:786] [Task: demo_boolq] metric f1 is defined, but higher_is_better is not. using default higher_is_better=True\n",
            "/usr/local/lib/python3.10/dist-packages/datasets/load.py:1486: FutureWarning: The repository for super_glue contains custom code which must be executed to correctly load the dataset. You can inspect the repository content at https://hf.co/datasets/super_glue\n",
            "You can avoid this message in future by passing the argument `trust_remote_code=True`.\n",
            "Passing `trust_remote_code=True` will be mandatory to load this dataset from the next major release of `datasets`.\n",
            "  warnings.warn(\n",
            "2024-05-30:06:28:35,330 INFO     [task.py:398] Building contexts for demo_boolq on rank 0...\n",
            "100% 20/20 [00:00<00:00, 1841.06it/s]\n",
            "2024-05-30:06:28:35,342 INFO     [evaluator.py:395] Running loglikelihood requests\n",
            "Running loglikelihood requests: 100% 40/40 [00:22<00:00,  1.80it/s]\n",
            "/usr/lib/python3.10/multiprocessing/popen_fork.py:66: RuntimeWarning: os.fork() was called. os.fork() is incompatible with multithreaded code, and JAX is multithreaded, so this will likely lead to a deadlock.\n",
            "  self.pid = os.fork()\n",
            "bootstrapping for stddev: f1_score\n",
            "100% 100/100 [02:00<00:00,  1.20s/it]\n",
            "fatal: not a git repository (or any of the parent directories): .git\n",
            "2024-05-30:06:30:59,045 INFO     [evaluation_tracker.py:132] Saving results aggregated\n",
            "2024-05-30:06:30:59,046 INFO     [evaluation_tracker.py:203] Saving samples results\n",
            "hf (pretrained=mistralai/Mistral-7B-v0.1), gen_kwargs: (None), limit: 20.0, num_fewshot: None, batch_size: 1\n",
            "|  Tasks   |Version|Filter|n-shot|Metric|Value|   |Stderr|\n",
            "|----------|-------|------|-----:|------|----:|---|-----:|\n",
            "|demo_boolq|Yaml   |none  |     0|acc   |0.800|±  |0.0918|\n",
            "|          |       |none  |     0|f1    |0.875|±  |0.0642|\n",
            "\n"
          ]
        }
      ],
      "source": [
        "!lm_eval \\\n",
        "    --model hf \\\n",
        "    --model_args pretrained=mistralai/Mistral-7B-v0.1 \\\n",
        "    --include_path ./ \\\n",
        "    --tasks demo_boolq \\\n",
        "    --output output/ \\\n",
        "    --limit 20 \\\n",
        "    --log_samples"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "ivXfua4qLggD"
      },
      "source": [
        "# Convert to Analytics Platform JSON\n"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "qjyOXzRvMBQs"
      },
      "source": [
        "### Let's start with defining the `name`, `models`, and `metrics` we used in this demo\n"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 24,
      "metadata": {
        "id": "LNGj4ncsLqVq"
      },
      "outputs": [],
      "source": [
        "name = \"LM Evaluation Harness Demo\"\n",
        "\n",
        "# models -> List[dict]\n",
        "models = [\n",
        "    {\n",
        "        \"model_id\": \"EleutherAI/pythia-2.8b\",\n",
        "        \"name\": \"Pythia-2.9b\",\n",
        "        \"owner\": \"EleutherAI\",\n",
        "    },\n",
        "    {\n",
        "        \"model_id\": \"mistralai/Mistral-7B-v0.1\",\n",
        "        \"name\": \"Mistral-7B-v0.1\",\n",
        "        \"owner\": \"Mistral AI\",\n",
        "    },\n",
        "]\n",
        "\n",
        "# metrics -> List[dict]\n",
        "all_metrics = [\n",
        "    {\n",
        "        \"name\": \"F1\",\n",
        "        \"display_name\": \"F1\",\n",
        "        \"description\": \"F1 score \",\n",
        "        \"author\": \"algorithm\",\n",
        "        \"type\": \"numerical\",\n",
        "        \"aggregator\": \"average\",\n",
        "        \"range\": [0, 1.0, 0.1],\n",
        "    },\n",
        "    {\n",
        "        \"name\": \"Accuracy\",\n",
        "        \"display_name\": \"Accuracy\",\n",
        "        \"description\": \"Prediction accuracy\",\n",
        "        \"author\": \"algorithm\",\n",
        "        \"type\": \"numerical\",\n",
        "        \"aggregator\": \"average\",\n",
        "        \"range\": [0, 1.0, 0.1],\n",
        "    },\n",
        "]"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "HntEhvugQt2Y"
      },
      "source": [
        "## Now let's define `tasks`, `documents`, and `evaluations`\n"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 27,
      "metadata": {
        "id": "9yRse3PQQsxb"
      },
      "outputs": [],
      "source": [
        "import json\n",
        "\n",
        "outputs = []\n",
        "\n",
        "# modify output filepath for pythia-2.8b here\n",
        "with open(\n",
        "    \"output/EleutherAI__pythia-2.8b/samples_demo_boolq_2024-05-30T02-24-44.249027.json\",\n",
        "    \"r\",\n",
        ") as f:\n",
        "    model_1_samples = json.load(f)\n",
        "\n",
        "# modify output filepath for Mistral-7B-v0.1 here\n",
        "with open(\n",
        "    \"output/mistralai__Mistral-7B-v0.1/samples_demo_boolq_2024-05-30T02-28-34.024454.json\",\n",
        "    \"r\",\n",
        ") as f:\n",
        "    model_2_samples = json.load(f)\n",
        "\n",
        "all_tasks = []\n",
        "all_documents = []\n",
        "all_evaluations = []\n",
        "for model_1_sample, model_2_sample in zip(model_1_samples, model_2_samples):\n",
        "    assert model_1_sample[\"doc_id\"] == model_2_sample[\"doc_id\"]\n",
        "    doc_id = model_1_sample[\"doc_id\"]\n",
        "    content_1 = model_1_sample.get(\"doc\")\n",
        "    content_2 = model_2_sample.get(\"doc\")\n",
        "    passage_text = content_1.get(\"passage\")\n",
        "    document = {\"document_id\": f\"doc_{doc_id}\", \"text\": passage_text}\n",
        "\n",
        "    all_documents.extend([document])\n",
        "    instance = {\n",
        "        \"task_id\": f\"{doc_id}\",\n",
        "        \"task_type\": \"conversation\",\n",
        "        \"contexts\": [{\"document_id\": document[\"document_id\"]}],\n",
        "        \"input\": [{\"speaker\": \"user\", \"text\": f\"{model_1_sample['doc']['question']}\"}],\n",
        "        \"targets\": [{\"text\": \"yes\" if model_1_sample[\"target\"] else \"no\"}],\n",
        "    }\n",
        "    all_tasks.append(instance)\n",
        "\n",
        "    for i, pred in enumerate([model_1_sample, model_2_sample]):\n",
        "        model_id = models[i][\"model_id\"]\n",
        "        target = \"yes\" if pred[\"target\"] else \"no\"\n",
        "        prediction = (\n",
        "            \"no\"\n",
        "            if pred[\"filtered_resps\"][0][0] > pred[\"filtered_resps\"][1][0]\n",
        "            else \"yes\"\n",
        "        )\n",
        "        all_evaluations.append(\n",
        "            {\n",
        "                \"task_id\": f\"{doc_id}\",\n",
        "                \"model_id\": model_id,\n",
        "                \"model_response\": prediction,\n",
        "                \"annotations\": {\n",
        "                    \"Accuracy\": {\n",
        "                        \"system\": {\n",
        "                            \"value\": 1 if prediction == target else 0,\n",
        "                            \"duration\": 0,\n",
        "                        }\n",
        "                    },\n",
        "                    \"F1\": {\n",
        "                        \"system\": {\n",
        "                            \"value\": 1 if prediction == target else 0,\n",
        "                            \"duration\": 0,\n",
        "                        }\n",
        "                    },\n",
        "                },\n",
        "            }\n",
        "        )"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 29,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "NM_VZxEU5UiX",
        "outputId": "7cb16261-b0ed-49dd-e2e2-0a1974c17f9f"
      },
      "outputs": [
        {
          "data": {
            "text/plain": [
              "(20, 20, 40)"
            ]
          },
          "execution_count": 29,
          "metadata": {},
          "output_type": "execute_result"
        }
      ],
      "source": [
        "len(all_tasks), len(all_documents), len(all_evaluations)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "bekGOYtEcABN"
      },
      "source": [
        "## Now we can write the output to file and import it into our dashboard for analysis :D\n"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 30,
      "metadata": {
        "id": "3tjuCibsYzG7"
      },
      "outputs": [],
      "source": [
        "import json\n",
        "\n",
        "output = {\n",
        "    \"name\": name,\n",
        "    \"models\": models,\n",
        "    \"metrics\": all_metrics,\n",
        "    \"documents\": all_documents,\n",
        "    \"tasks\": all_tasks,\n",
        "    \"evaluations\": all_evaluations,\n",
        "}\n",
        "\n",
        "with open(\n",
        "    file=\"lm-eval-harness-inspectorraget-demo.json\", mode=\"w\", encoding=\"utf-8\"\n",
        ") as fp:\n",
        "    json.dump(output, fp, indent=4)"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "iIcWaE51cuAh"
      },
      "outputs": [],
      "source": []
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "8BEkotPhx-_w"
      },
      "source": []
    }
  ],
  "metadata": {
    "accelerator": "GPU",
    "colab": {
      "gpuType": "T4",
      "machine_shape": "hm",
      "provenance": []
    },
    "kernelspec": {
      "display_name": "Python 3",
      "name": "python3"
    },
    "language_info": {
      "name": "python"
    }
  },
  "nbformat": 4,
  "nbformat_minor": 0
}