Spaces:
Sleeping
Sleeping
File size: 6,213 Bytes
ab72d17 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
#!/usr/bin/env python
# coding: utf-8
# In[1]:
import numpy as np
import torch
import torch.nn as nn
import math
import torch
import os
import torch
import torch.nn as nn
import numpy as np
import pickle
from dataclasses import dataclass, asdict
import json
from torch.utils.data import DataLoader
# Normalization Layer for Conv2D
class Norm(nn.Module):
def __init__(self, num_channels, num_groups=4):
super(Norm, self).__init__()
self.norm = nn.GroupNorm(num_groups, num_channels)
def forward(self, x):
return self.norm(x)
# Encoder using Conv2D
class Encoder(nn.Module):
def __init__(self, latent_dim=3):
super(Encoder, self).__init__()
self.conv_layers = nn.Sequential(
# Input: (batch_size, 1, 256, 256)
nn.Conv2d(1, 32, kernel_size=2, stride=2, padding=0), # (batch_size, 64, 128, 128)
nn.GELU(),
Norm(32),
nn.Conv2d(32, 64, kernel_size=2, stride=2, padding=0), # (batch_size, 128, 64, 64)
nn.GELU(),
Norm(64),
nn.Conv2d(64, 128, kernel_size=2, stride=2, padding=0), # (batch_size, 256, 32, 32)
nn.GELU(),
Norm(128),
nn.Conv2d(128, 256, kernel_size=2, stride=2, padding=0), # (batch_size, 512, 16, 16)
nn.GELU(),
Norm(256),
nn.Conv2d(256, 512, kernel_size=2, stride=2, padding=0), # (batch_size, 512, 8, 8)
nn.GELU(),
Norm(512),
)
self.flatten = nn.Flatten()
self.fc_mean = nn.Linear(512 * 4 * 4, latent_dim)
self.fc_log_var = nn.Linear(512 * 4 * 4, latent_dim)
def forward(self, x):
x = self.conv_layers(x)
x = self.flatten(x)
mean = self.fc_mean(x)
log_var = self.fc_log_var(x)
return mean, log_var
class Decoder(nn.Module):
def __init__(self, latent_dim=3):
super(Decoder, self).__init__()
# Fully connected layer to transform the latent vector back to the shape (batch_size, 512, 8, 8)
self.fc = nn.Linear(latent_dim, 512 * 4 * 4)
self.deconv_layers = nn.Sequential(
nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True),
nn.Conv2d(512, 256, kernel_size=1),
nn.GELU(),
Norm(256),
nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True),
nn.Conv2d(256, 128, kernel_size=1),
nn.GELU(),
Norm(128),
nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True),
nn.Conv2d(128, 64, kernel_size=1),
nn.GELU(),
Norm(64),
nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True),
nn.Conv2d(64, 32, kernel_size=1),
nn.GELU(),
Norm(32),
nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True),
nn.Conv2d(32, 1, kernel_size=1),
nn.ReLU()
)
def forward(self, z):
# Transform the latent vector to match the shape of the feature maps
x = self.fc(z)
x = x.view(-1, 512, 4, 4) # Reshape to (batch_size, 512, 4, 4)
x = self.deconv_layers(x)
return x
class Propagator_concat(nn.Module):
"""
Takes in (z(t), tau, alpha) and outputs z(t+tau)
"""
def __init__(self, latent_dim, feats=[16, 32, 64, 32, 16]):
"""
Initialize the propagator network.
Input : (z(t), tau)
Output: z(t+tau)
"""
super(Propagator_concat, self).__init__()
self._net = nn.Sequential(
nn.Linear(latent_dim + 2, feats[0]), # 1 is for tau; more params will increase this
nn.GELU(),
nn.Linear(feats[0], feats[1]),
nn.GELU(),
nn.Linear(feats[1], feats[2]),
nn.GELU(),
nn.Linear(feats[2], feats[3]),
nn.GELU(),
nn.Linear(feats[3], feats[4]),
nn.GELU(),
nn.Linear(feats[4], latent_dim),
)
def forward(self, z, tau, alpha):
"""
Forward pass of the propagator.
Concatenates latent vector z with tau and processes through the network.
"""
zproj = z.squeeze(1) # Adjust z dimensions if necessary
z_ = torch.cat((zproj, tau, alpha), dim=1) # Concatenate z and tau along the last dimension
z_tau = self._net(z_)
return z_tau, z_
class Model(nn.Module):
def __init__(self, encoder, decoder, propagator):
super(Model, self).__init__()
self.encoder = encoder
self.decoder = decoder # decoder for x(t)
self.propagator = propagator # used to time march z(t) to z(t+tau)
def reparameterization(self, mean, var):
epsilon = torch.randn_like(var)
z = mean + var * epsilon
return z
def forward(self, x, tau, alpha):
mean, log_var = self.encoder(x)
z = self.reparameterization(mean, torch.exp(0.5 * log_var))
# Update small fcnn to get z(t+tau) from z(t)
z_tau, z_ = self.propagator(z, tau, alpha)
# Reconstruction
x_hat = self.decoder(z) # Reconstruction of x(t)
x_hat_tau = self.decoder(z_tau)
return x_hat, x_hat_tau, mean, log_var, z_tau, z_
def loss_function(x, x_tau, x_hat, x_hat_tau, mean, log_var):
"""
Compute the VAE loss components.
:param x: Original input
:param x_tau: Future input (ground truth)
:param x_hat: Reconstructed x(t)
:param x_hat_tau: Predicted x(t+tau)
:param mean: Mean of the latent distribution
:param log_var: Log variance of the latent distribution
:return: reconstruction_loss1, reconstruction_loss2, KLD
"""
reconstruction_loss1 = nn.MSELoss()(x, x_hat) # Reconstruction loss for x(t)
reconstruction_loss2 = nn.MSELoss()(x_tau, x_hat_tau) # Prediction loss for x(t+tau)
# Kullback-Leibler Divergence
KLD = torch.mean(-0.5 * torch.sum(1 + log_var - mean.pow(2) - log_var.exp(), dim=1)) # Updated dim
return reconstruction_loss1, reconstruction_loss2, KLD
|