Flexi-Propagator / data_adv_dif.py
Khalid Rafiq
Add all required modules and requirements.txt
ab72d17
raw
history blame
10.4 kB
import os
import pickle
import numpy as np
import matplotlib.pyplot as plt
import torch
from dataclasses import dataclass, asdict
import json
# Rnum = 1000
num_time_steps = 500
def get_dt(num_time_steps):
return 2.0/num_time_steps
dt = get_dt(num_time_steps)
def exact_solution(alpha, t, L=2.0, Nx=128, Ny=128, c=1.0):
nu = 1.0 / alpha
x_vals = np.linspace(-L, L, Nx)
y_vals = np.linspace(-L, L, Ny)
X, Y = np.meshgrid(x_vals, y_vals)
if t <= 0:
return np.zeros_like(X)
rx = X - c * t
ry = Y
r2 = rx**2 + ry**2
denominator = 4.0 * nu * t
amplitude = 1.0 / (4.0 * np.pi * nu * t)
U = amplitude * np.exp(-r2 / denominator)
return U
class AdvectionDiffussionDataset:
def __init__(self,
X: np.ndarray = None,
X_tau: np.ndarray = None,
t_values: np.ndarray = None,
tau_values: np.ndarray = None,
alpha_values: np.ndarray = None):
self.X = X
self.X_tau = X_tau
self.t_values = t_values
self.tau_values = tau_values
self.alpha_values = alpha_values
def append(self, other):
self.X = np.concatenate([self.X, other.X]) if self.X is not None else other.X
self.X_tau = np.concatenate([self.X_tau, other.X_tau]) if self.X_tau is not None else other.X_tau
self.t_values = np.concatenate([self.t_values, other.t_values]) if self.t_values is not None else other.t_values
self.tau_values = np.concatenate([self.tau_values, other.tau_values]) if self.tau_values is not None else other.tau_values
self.alpha_values = np.concatenate([self.alpha_values, other.alpha_values]) if self.alpha_values is not None else other.alpha_values
@dataclass
class IntervalSplit:
interpolation: tuple
extrapolation_left: tuple
extrapolation_right: tuple
def prepare_adv_diff_dataset(alpha_range=(0.01, 10), tau_range=(150, 400), dt=dt, n_samples=500):
X = []
X_tau = []
t_values = []
tau_values = []
alpha_values = []
TRANGE = (0.01, 2.0)
while len(X) < n_samples:
# sample alpha uniformly
alpha = np.random.uniform(*alpha_range)
t = np.random.uniform(*TRANGE)
x_t = exact_solution(alpha, t)
tau = np.random.randint(*tau_range)
x_tau = exact_solution(alpha, t+(tau*dt))
X.append(x_t)
X_tau.append(x_tau)
t_values.append(t)
tau_values.append(tau)
alpha_values.append(alpha)
X = np.array(X)
X_tau = np.array(X_tau)
t_values = np.array(t_values)
tau_values = np.array(tau_values)
alpha_values = np.array(alpha_values)
dataset = AdvectionDiffussionDataset(X, X_tau, t_values, tau_values, alpha_values)
return dataset
def train_test_split_range(interval, interpolation_span=0.1, extrapolation_left_span=0.1, extrapolation_right_span=0.1):
"""
Split the range into train and test ranges
We have three test folds:
1. Interpolation fold: Re and tau values are within the training (min, max) range but not in the training set
We sample an interval of length x_interpolation_span% randomly from the total range
2. Extrapolation fold: Re and tau values are outside the training (min, max) range
We sample two intervals of length x_extrapolation_right_span% and x_extrapolation_left_span% from the total range
3. Validation fold: Re and tau values are randomly sampled from the total set
Overall interval looks like:
Extrapolation_left_test | normal | Interpolation_test | normal | Extrapolation_right_test
(min, extrapolation_left) | (extraplation_left, interpolation_min) | (interpolation_min, interpolation_max) | (interpolation_max, extrapolation_right) | (extrapolation_right, max)
and
train, val = split(normal, val_split)
"""
r_min, r_max = interval
length = (r_max-r_min)
extra_left_length = extrapolation_left_span * length
extra_right_length = extrapolation_right_span * length
inter_length = interpolation_span * length
extrapolation_left = (r_min, r_min + extra_left_length)
extrapolation_right = (r_max - extra_right_length, r_max)
interpolation_min = np.random.uniform(extrapolation_left[1], extrapolation_right[0] - inter_length)
interpolation = (interpolation_min, interpolation_min + inter_length)
train_ranges = [(extrapolation_left[1], interpolation[0]), (interpolation[1], extrapolation_right[0])]
return IntervalSplit(interpolation, extrapolation_left, extrapolation_right), train_ranges
def get_train_ranges(interval_split):
return [
(interval_split.extrapolation_left[1], interval_split.interpolation[0]),
(interval_split.interpolation[1], interval_split.extrapolation_right[0])
]
def get_train_val_test_folds(alpha_range, tau_range,
alpha_interpolation_span=0.10,
alpha_extrapolation_left_span=0.10,
alpha_extrapolation_right_span=0.10,
tau_interpolation_span=0.10,
tau_extrapolation_left_span=0.10,
tau_extrapolation_right_span=0.10,
n_samples_train=500,
n_samples_val=200):
"""
Generate train (4 sub-regions) and val (left extrp, interp, right extrp
for alpha x left extrp, interp, right extrp for tau) datasets.
Returns:
dataset_train : AdvectionDiffussionDataset
dataset_val : AdvectionDiffussionDataset
alpha_interval_split: IntervalSplit
tau_interval_split : IntervalSplit
"""
# ---------------------------------------------------------------------
# 1) Split alpha into 4 regions: left extrp, interp, right extrp, train
# 2) Split tau into 4 regions: left extrp, interp, right extrp, train
# ---------------------------------------------------------------------
alpha_interval_split, alpha_train_ranges = train_test_split_range(
alpha_range,
alpha_interpolation_span,
alpha_extrapolation_left_span,
alpha_extrapolation_right_span
)
tau_interval_split, tau_train_ranges = train_test_split_range(
tau_range,
tau_interpolation_span,
tau_extrapolation_left_span,
tau_extrapolation_right_span
)
# alpha_train_ranges and tau_train_ranges each have 2 intervals:
# alpha_train_ranges = [ (a1_lo, a1_hi), (a2_lo, a2_hi) ]
# tau_train_ranges = [ (t1_lo, t1_hi), (t2_lo, t2_hi) ]
#
# Meanwhile, alpha_interval_split has:
# alpha_interval_split.extrapolation_left = (a_left_lo, a_left_hi)
# alpha_interval_split.interpolation = (a_int_lo, a_int_hi)
# alpha_interval_split.extrapolation_right = (a_right_lo, a_right_hi)
# and similarly for tau_interval_split.
# -------------------------------------------------------------
# 3) Build the TRAIN dataset from the Cartesian product
# of alpha_train_ranges x tau_train_ranges => 4 combos
# -------------------------------------------------------------
dataset_train = AdvectionDiffussionDataset()
for alpha_subrange in alpha_train_ranges: # 2 intervals
for tau_subrange in tau_train_ranges: # 2 intervals
subset = prepare_adv_diff_dataset(
alpha_range=alpha_subrange,
tau_range=tau_subrange,
n_samples=n_samples_train
)
dataset_train.append(subset)
# -------------------------------------------------------------
# 4) Build the VAL dataset from the leftover intervals:
# alpha in { left extrp, interp, right extrp }
# x tau in { left extrp, interp, right extrp } => up to 9 combos
# -------------------------------------------------------------
alpha_val_intervals = [
alpha_interval_split.extrapolation_left,
alpha_interval_split.interpolation,
alpha_interval_split.extrapolation_right
]
tau_val_intervals = [
tau_interval_split.extrapolation_left,
tau_interval_split.interpolation,
tau_interval_split.extrapolation_right
]
dataset_val = AdvectionDiffussionDataset()
for a_val_range in alpha_val_intervals:
for t_val_range in tau_val_intervals:
subset_val = prepare_adv_diff_dataset(
alpha_range=a_val_range,
tau_range=t_val_range,
n_samples=n_samples_val
)
dataset_val.append(subset_val)
return dataset_train, dataset_val, alpha_interval_split, tau_interval_split
def plot_sample(dataset, i):
"""
Plot a sample pair from the dataset.
"""
X = dataset.X
X_tau = dataset.X_tau
t_values = dataset.t_values
tau_values = dataset.tau_values
alpha_values = dataset.alpha_values
print("Shape of X:", X.shape)
fig, axs = plt.subplots(1, 2, figsize=(12, 5))
im1 = axs[0].imshow(X[i], extent=[0, 1, 0, 1], origin='lower', cmap='hot')
axs[0].set_title(f'Initial State (t: {t_values[i]})')
plt.colorbar(im1, ax=axs[0])
im2 = axs[1].imshow(X_tau[i], extent=[0, 1, 0, 1], origin='lower', cmap='hot')
axs[1].set_title(f'Shifted State (t + tau): {t_values[i]+tau_values[i]*dt}')
plt.colorbar(im2, ax=axs[1])
fig.suptitle(f'Tau: {tau_values[i]}, Alpha: {alpha_values[i]:.4f}')
plt.show()
def load_from_path(path):
dataset_train_path = os.path.join(path, 'dataset_train.pkl')
dataset_val_path = os.path.join(path, 'dataset_val.pkl')
alpha_interval_split_path = os.path.join(path, 'alpha_interval_split.json')
tau_interval_split_path = os.path.join(path, 'tau_interval_split.json')
with open(dataset_train_path, 'rb') as f:
dataset_train = pickle.load(f)
with open(dataset_val_path, 'rb') as f:
dataset_val = pickle.load(f)
with open(alpha_interval_split_path, 'r') as f:
alpha_interval_split = json.load(f)
alpha_interval_split = IntervalSplit(**alpha_interval_split)
with open(tau_interval_split_path, 'r') as f:
tau_interval_split = json.load(f)
tau_interval_split = IntervalSplit(**tau_interval_split)
return dataset_train, dataset_val, alpha_interval_split, tau_interval_split