Flexi-Propagator / data_burgers.py
Khalid Rafiq
Add all required modules and requirements.txt
ab72d17
raw
history blame
9.77 kB
import os
import pickle
import numpy as np
import matplotlib.pyplot as plt
import torch
from dataclasses import dataclass, asdict
import json
# Rnum = 1000
num_time_steps = 500
# # x = np.linspace(0.0,1.0,num=128)
# dx = 1.0/np.shape(x)[0]
# TSTEPS = np.linspace(0.0,2.0,num=num_time_steps)
# dt = 2.0/np.shape(TSTEPS)[0]
def get_dt(num_time_steps):
return 2.0/num_time_steps
dt = get_dt(num_time_steps)
def exact_solution(Rnum,t):
x = np.linspace(0.0,1.0,num=128)
t0 = np.exp(Rnum/8.0)
return (x/(t+1))/(1.0+np.sqrt((t+1)/t0)*np.exp(Rnum*(x*x)/(4.0*t+4)))
class ReDataset:
def __init__(self,
X: np.ndarray = None,
X_tau: np.ndarray = None,
t_values: np.ndarray = None,
tau_values: np.ndarray = None,
Re_values: np.ndarray = None):
self.X = X
self.X_tau = X_tau
self.t_values = t_values
self.tau_values = tau_values
self.Re_values = Re_values
def append(self, other):
self.X = np.concatenate([self.X, other.X]) if self.X is not None else other.X
self.X_tau = np.concatenate([self.X_tau, other.X_tau]) if self.X_tau is not None else other.X_tau
self.t_values = np.concatenate([self.t_values, other.t_values]) if self.t_values is not None else other.t_values
self.tau_values = np.concatenate([self.tau_values, other.tau_values]) if self.tau_values is not None else other.tau_values
self.Re_values = np.concatenate([self.Re_values, other.Re_values]) if self.Re_values is not None else other.Re_values
@dataclass
class IntervalSplit:
interpolation: tuple
extrapolation_left: tuple
extrapolation_right: tuple
def get_time_shifts(snapshots, tau_range=(100, 500), n_samples=100):
X = []
X_tau = []
tau_values = []
while len(X) < n_samples:
tau = np.random.randint(*tau_range)
i = np.random.randint(0, len(snapshots)-tau)
X.append(snapshots[i])
X_tau.append(snapshots[i+tau])
tau_values.append(tau)
X = np.array(X)
X_tau = np.array(X_tau)
tau_values = np.array(tau_values)
return X, X_tau, tau_values
def prepare_Re_dataset(Re_range=(100, 2000), tau_range=(500, 1900), dt=dt, n_samples=5000):
X = []
X_tau = []
t_values = []
tau_values = []
Re_values = []
TRANGE = (0,2)
while len(X) < n_samples:
# sample Re log uniformly
logRe = np.random.uniform(np.log(Re_range[0]), np.log(Re_range[1]))
Re = np.exp(logRe).round().astype(int)
t = np.random.uniform(*TRANGE)
x_t = exact_solution(Re, t)
# print('tau_range', tau_range)
tau = np.random.randint(*tau_range)
x_tau = exact_solution(Re, t+(tau*dt))
X.append(x_t)
X_tau.append(x_tau)
t_values.append(t)
tau_values.append(tau)
Re_values.append(Re)
X = np.array(X)
X_tau = np.array(X_tau)
t_values = np.array(t_values)
tau_values = np.array(tau_values)
Re_values = np.array(Re_values)
# return X, X_tau, tau_values, Re_values
dataset = ReDataset(X, X_tau, t_values, tau_values, Re_values)
return dataset
def train_test_split_range(interval, interpolation_span=0.1, extrapolation_left_span=0.1, extrapolation_right_span=0.1):
"""
Split the range into train and test ranges
We have three test folds:
1. Interpolation fold: Re and tau values are within the training (min, max) range but not in the training set
We sample an interval of length x_interpolation_span% randomly from the total range
2. Extrapolation fold: Re and tau values are outside the training (min, max) range
We sample two intervals of length x_extrapolation_right_span% and x_extrapolation_left_span% from the total range
3. Validation fold: Re and tau values are randomly sampled from the total set
Overall interval looks like:
Extrapolation_left_test | normal | Interpolation_test | normal | Extrapolation_right_test
(min, extrapolation_left) | (extraplation_left, interpolation_min) | (interpolation_min, interpolation_max) | (interpolation_max, extrapolation_right) | (extrapolation_right, max)
and
train, val = split(normal, val_split)
"""
r_min, r_max = interval
length = (r_max-r_min)
extra_left_length = extrapolation_left_span * length
extra_right_length = extrapolation_right_span * length
inter_length = interpolation_span * length
extrapolation_left = (r_min, r_min + extra_left_length)
extrapolation_right = (r_max - extra_right_length, r_max)
interpolation_min = np.random.uniform(extrapolation_left[1], extrapolation_right[0] - inter_length)
interpolation = (interpolation_min, interpolation_min + inter_length)
train_ranges = [(extrapolation_left[1], interpolation[0]), (interpolation[1], extrapolation_right[0])]
return IntervalSplit(interpolation, extrapolation_left, extrapolation_right), train_ranges
def get_train_ranges(interval_split):
return [
(interval_split.extrapolation_left[1], interval_split.interpolation[0]),
(interval_split.interpolation[1], interval_split.extrapolation_right[0])
]
# def get_dataset_from_ranges(train_ranges):
# dataset = ReDataset()
# for re_train_range, tau_train_range in zip(Re_train_ranges, tau_train_ranges):
# train_dataset = prepare_Re_dataset(Re_range=re_train_range, tau_range=tau_train_range, n_samples=n_samples_train)
# dataset.append(train_dataset)
# return dataset
def get_train_val_test_folds(Re_range, tau_range,
re_interpolation_span=0.10,
re_extrapolation_left_span=0.1,
re_extrapolation_right_span=0.10,
tau_interpolation_span=0.10,
tau_extrapolation_left_span=0.1,
tau_extrapolation_right_span=0.10,
n_samples_train=1000000,
val_split=0.2):
Re_interval_split, Re_train_ranges = train_test_split_range(Re_range, re_interpolation_span, re_extrapolation_left_span, re_extrapolation_right_span)
tau_interval_split, tau_train_ranges = train_test_split_range(tau_range, tau_interpolation_span, tau_extrapolation_left_span, tau_extrapolation_right_span)
# print(Re_interval_split, Re_train_ranges)
# print(tau_interval_split, tau_train_ranges)
# prepare train dataset
dataset = ReDataset()
for re_train_range, tau_train_range in zip(Re_train_ranges, tau_train_ranges):
train_dataset = prepare_Re_dataset(Re_range=re_train_range, tau_range=tau_train_range, n_samples=n_samples_train)
dataset.append(train_dataset)
inds = np.arange(len(dataset.X))
np.random.shuffle(inds)
train_inds = inds[:int(len(inds)*(1-val_split))]
val_inds = inds[int(len(inds)*(1-val_split)):]
dataset_train = ReDataset(dataset.X[train_inds], dataset.X_tau[train_inds], dataset.t_values[train_inds], dataset.tau_values[train_inds], dataset.Re_values[train_inds])
dataset_val = ReDataset(dataset.X[val_inds], dataset.X_tau[val_inds],dataset.t_values[val_inds], dataset.tau_values[val_inds], dataset.Re_values[val_inds])
return dataset_train, dataset_val, Re_interval_split, tau_interval_split
def plot_sample(dataset, i):
X = dataset.X
X_tau = dataset.X_tau
Tau = dataset.tau_values
Re_total = dataset.Re_values
plt.plot(X[i], label = "Initial State")
plt.plot(X_tau[i], label = "Mapped State")
plt.title(f'Tau: {Tau[i]}, Re: {Re_total[i]}')
plt.legend()
plt.show()
def save_to_path(path, dataset_train, dataset_val, Re_interval_split, tau_interval_split):
if not os.path.exists(path):
os.makedirs(path)
# save dataset_train, dataset_val, Re_interval_split, tau_interval_split to pkl files
dataset_train_path = os.path.join(path, 'dataset_train.pkl')
dataset_val_path = os.path.join(path, 'dataset_val.pkl')
Re_interval_split_path = os.path.join(path, 'Re_interval_split.json')
tau_interval_split_path = os.path.join(path, 'tau_interval_split.json')
with open(dataset_train_path, 'wb') as f:
pickle.dump(dataset_train, f)
with open(dataset_val_path, 'wb') as f:
pickle.dump(dataset_val, f)
with open(Re_interval_split_path, 'w') as f:
json.dump(asdict(Re_interval_split), f)
with open(tau_interval_split_path, 'w') as f:
json.dump(asdict(tau_interval_split), f)
def load_from_path(path):
dataset_train_path = os.path.join(path, 'dataset_train.pkl')
dataset_val_path = os.path.join(path, 'dataset_val.pkl')
Re_interval_split_path = os.path.join(path, 'Re_interval_split.json')
tau_interval_split_path = os.path.join(path, 'tau_interval_split.json')
with open(dataset_train_path, 'rb') as f:
dataset_train = pickle.load(f)
with open(dataset_val_path, 'rb') as f:
dataset_val = pickle.load(f)
with open(Re_interval_split_path, 'r') as f:
Re_interval_split = json.load(f)
Re_interval_split = IntervalSplit(**Re_interval_split)
with open(tau_interval_split_path, 'r') as f:
tau_interval_split = json.load(f)
tau_interval_split = IntervalSplit(**tau_interval_split)
return dataset_train, dataset_val, Re_interval_split, tau_interval_split
def main():
#Re_range = (100, 3000)
#num_time_steps = 500
#tau_range = (175, 425)
#dataset_train, dataset_val, Re_interval_split, tau_interval_split = get_train_val_test_folds(Re_range, tau_range)
#save_to_path('data', dataset_train, dataset_val, Re_interval_split, tau_interval_split)
load_from_path('data')
if __name__ == '__main__':
main()