Spaces:
Sleeping
Sleeping
import os | |
import pickle | |
import numpy as np | |
import matplotlib.pyplot as plt | |
import torch | |
from dataclasses import dataclass, asdict | |
import json | |
# Rnum = 1000 | |
num_time_steps = 500 | |
def get_dt(num_time_steps): | |
return 2.0/num_time_steps | |
dt = get_dt(num_time_steps) | |
def exact_solution(alpha, t, L=2.0, Nx=128, Ny=128, c=1.0): | |
nu = 1.0 / alpha | |
x_vals = np.linspace(-L, L, Nx) | |
y_vals = np.linspace(-L, L, Ny) | |
X, Y = np.meshgrid(x_vals, y_vals) | |
if t <= 0: | |
return np.zeros_like(X) | |
rx = X - c * t | |
ry = Y | |
r2 = rx**2 + ry**2 | |
denominator = 4.0 * nu * t | |
amplitude = 1.0 / (4.0 * np.pi * nu * t) | |
U = amplitude * np.exp(-r2 / denominator) | |
return U | |
class AdvectionDiffussionDataset: | |
def __init__(self, | |
X: np.ndarray = None, | |
X_tau: np.ndarray = None, | |
t_values: np.ndarray = None, | |
tau_values: np.ndarray = None, | |
alpha_values: np.ndarray = None): | |
self.X = X | |
self.X_tau = X_tau | |
self.t_values = t_values | |
self.tau_values = tau_values | |
self.alpha_values = alpha_values | |
def append(self, other): | |
self.X = np.concatenate([self.X, other.X]) if self.X is not None else other.X | |
self.X_tau = np.concatenate([self.X_tau, other.X_tau]) if self.X_tau is not None else other.X_tau | |
self.t_values = np.concatenate([self.t_values, other.t_values]) if self.t_values is not None else other.t_values | |
self.tau_values = np.concatenate([self.tau_values, other.tau_values]) if self.tau_values is not None else other.tau_values | |
self.alpha_values = np.concatenate([self.alpha_values, other.alpha_values]) if self.alpha_values is not None else other.alpha_values | |
class IntervalSplit: | |
interpolation: tuple | |
extrapolation_left: tuple | |
extrapolation_right: tuple | |
def prepare_adv_diff_dataset(alpha_range=(0.01, 10), tau_range=(150, 400), dt=dt, n_samples=500): | |
X = [] | |
X_tau = [] | |
t_values = [] | |
tau_values = [] | |
alpha_values = [] | |
TRANGE = (0.01, 2.0) | |
while len(X) < n_samples: | |
# sample alpha uniformly | |
alpha = np.random.uniform(*alpha_range) | |
t = np.random.uniform(*TRANGE) | |
x_t = exact_solution(alpha, t) | |
tau = np.random.randint(*tau_range) | |
x_tau = exact_solution(alpha, t+(tau*dt)) | |
X.append(x_t) | |
X_tau.append(x_tau) | |
t_values.append(t) | |
tau_values.append(tau) | |
alpha_values.append(alpha) | |
X = np.array(X) | |
X_tau = np.array(X_tau) | |
t_values = np.array(t_values) | |
tau_values = np.array(tau_values) | |
alpha_values = np.array(alpha_values) | |
dataset = AdvectionDiffussionDataset(X, X_tau, t_values, tau_values, alpha_values) | |
return dataset | |
def train_test_split_range(interval, interpolation_span=0.1, extrapolation_left_span=0.1, extrapolation_right_span=0.1): | |
""" | |
Split the range into train and test ranges | |
We have three test folds: | |
1. Interpolation fold: Re and tau values are within the training (min, max) range but not in the training set | |
We sample an interval of length x_interpolation_span% randomly from the total range | |
2. Extrapolation fold: Re and tau values are outside the training (min, max) range | |
We sample two intervals of length x_extrapolation_right_span% and x_extrapolation_left_span% from the total range | |
3. Validation fold: Re and tau values are randomly sampled from the total set | |
Overall interval looks like: | |
Extrapolation_left_test | normal | Interpolation_test | normal | Extrapolation_right_test | |
(min, extrapolation_left) | (extraplation_left, interpolation_min) | (interpolation_min, interpolation_max) | (interpolation_max, extrapolation_right) | (extrapolation_right, max) | |
and | |
train, val = split(normal, val_split) | |
""" | |
r_min, r_max = interval | |
length = (r_max-r_min) | |
extra_left_length = extrapolation_left_span * length | |
extra_right_length = extrapolation_right_span * length | |
inter_length = interpolation_span * length | |
extrapolation_left = (r_min, r_min + extra_left_length) | |
extrapolation_right = (r_max - extra_right_length, r_max) | |
interpolation_min = np.random.uniform(extrapolation_left[1], extrapolation_right[0] - inter_length) | |
interpolation = (interpolation_min, interpolation_min + inter_length) | |
train_ranges = [(extrapolation_left[1], interpolation[0]), (interpolation[1], extrapolation_right[0])] | |
return IntervalSplit(interpolation, extrapolation_left, extrapolation_right), train_ranges | |
def get_train_ranges(interval_split): | |
return [ | |
(interval_split.extrapolation_left[1], interval_split.interpolation[0]), | |
(interval_split.interpolation[1], interval_split.extrapolation_right[0]) | |
] | |
def get_train_val_test_folds(alpha_range, tau_range, | |
alpha_interpolation_span=0.10, | |
alpha_extrapolation_left_span=0.10, | |
alpha_extrapolation_right_span=0.10, | |
tau_interpolation_span=0.10, | |
tau_extrapolation_left_span=0.10, | |
tau_extrapolation_right_span=0.10, | |
n_samples_train=500, | |
n_samples_val=200): | |
""" | |
Generate train (4 sub-regions) and val (left extrp, interp, right extrp | |
for alpha x left extrp, interp, right extrp for tau) datasets. | |
Returns: | |
dataset_train : AdvectionDiffussionDataset | |
dataset_val : AdvectionDiffussionDataset | |
alpha_interval_split: IntervalSplit | |
tau_interval_split : IntervalSplit | |
""" | |
# --------------------------------------------------------------------- | |
# 1) Split alpha into 4 regions: left extrp, interp, right extrp, train | |
# 2) Split tau into 4 regions: left extrp, interp, right extrp, train | |
# --------------------------------------------------------------------- | |
alpha_interval_split, alpha_train_ranges = train_test_split_range( | |
alpha_range, | |
alpha_interpolation_span, | |
alpha_extrapolation_left_span, | |
alpha_extrapolation_right_span | |
) | |
tau_interval_split, tau_train_ranges = train_test_split_range( | |
tau_range, | |
tau_interpolation_span, | |
tau_extrapolation_left_span, | |
tau_extrapolation_right_span | |
) | |
# alpha_train_ranges and tau_train_ranges each have 2 intervals: | |
# alpha_train_ranges = [ (a1_lo, a1_hi), (a2_lo, a2_hi) ] | |
# tau_train_ranges = [ (t1_lo, t1_hi), (t2_lo, t2_hi) ] | |
# | |
# Meanwhile, alpha_interval_split has: | |
# alpha_interval_split.extrapolation_left = (a_left_lo, a_left_hi) | |
# alpha_interval_split.interpolation = (a_int_lo, a_int_hi) | |
# alpha_interval_split.extrapolation_right = (a_right_lo, a_right_hi) | |
# and similarly for tau_interval_split. | |
# ------------------------------------------------------------- | |
# 3) Build the TRAIN dataset from the Cartesian product | |
# of alpha_train_ranges x tau_train_ranges => 4 combos | |
# ------------------------------------------------------------- | |
dataset_train = AdvectionDiffussionDataset() | |
for alpha_subrange in alpha_train_ranges: # 2 intervals | |
for tau_subrange in tau_train_ranges: # 2 intervals | |
subset = prepare_adv_diff_dataset( | |
alpha_range=alpha_subrange, | |
tau_range=tau_subrange, | |
n_samples=n_samples_train | |
) | |
dataset_train.append(subset) | |
# ------------------------------------------------------------- | |
# 4) Build the VAL dataset from the leftover intervals: | |
# alpha in { left extrp, interp, right extrp } | |
# x tau in { left extrp, interp, right extrp } => up to 9 combos | |
# ------------------------------------------------------------- | |
alpha_val_intervals = [ | |
alpha_interval_split.extrapolation_left, | |
alpha_interval_split.interpolation, | |
alpha_interval_split.extrapolation_right | |
] | |
tau_val_intervals = [ | |
tau_interval_split.extrapolation_left, | |
tau_interval_split.interpolation, | |
tau_interval_split.extrapolation_right | |
] | |
dataset_val = AdvectionDiffussionDataset() | |
for a_val_range in alpha_val_intervals: | |
for t_val_range in tau_val_intervals: | |
subset_val = prepare_adv_diff_dataset( | |
alpha_range=a_val_range, | |
tau_range=t_val_range, | |
n_samples=n_samples_val | |
) | |
dataset_val.append(subset_val) | |
return dataset_train, dataset_val, alpha_interval_split, tau_interval_split | |
def plot_sample(dataset, i): | |
""" | |
Plot a sample pair from the dataset. | |
""" | |
X = dataset.X | |
X_tau = dataset.X_tau | |
t_values = dataset.t_values | |
tau_values = dataset.tau_values | |
alpha_values = dataset.alpha_values | |
print("Shape of X:", X.shape) | |
fig, axs = plt.subplots(1, 2, figsize=(12, 5)) | |
im1 = axs[0].imshow(X[i], extent=[0, 1, 0, 1], origin='lower', cmap='hot') | |
axs[0].set_title(f'Initial State (t: {t_values[i]})') | |
plt.colorbar(im1, ax=axs[0]) | |
im2 = axs[1].imshow(X_tau[i], extent=[0, 1, 0, 1], origin='lower', cmap='hot') | |
axs[1].set_title(f'Shifted State (t + tau): {t_values[i]+tau_values[i]*dt}') | |
plt.colorbar(im2, ax=axs[1]) | |
fig.suptitle(f'Tau: {tau_values[i]}, Alpha: {alpha_values[i]:.4f}') | |
plt.show() | |
def load_from_path(path): | |
dataset_train_path = os.path.join(path, 'dataset_train.pkl') | |
dataset_val_path = os.path.join(path, 'dataset_val.pkl') | |
alpha_interval_split_path = os.path.join(path, 'alpha_interval_split.json') | |
tau_interval_split_path = os.path.join(path, 'tau_interval_split.json') | |
with open(dataset_train_path, 'rb') as f: | |
dataset_train = pickle.load(f) | |
with open(dataset_val_path, 'rb') as f: | |
dataset_val = pickle.load(f) | |
with open(alpha_interval_split_path, 'r') as f: | |
alpha_interval_split = json.load(f) | |
alpha_interval_split = IntervalSplit(**alpha_interval_split) | |
with open(tau_interval_split_path, 'r') as f: | |
tau_interval_split = json.load(f) | |
tau_interval_split = IntervalSplit(**tau_interval_split) | |
return dataset_train, dataset_val, alpha_interval_split, tau_interval_split | |