Spaces:
Sleeping
Sleeping
import os | |
import pickle | |
import numpy as np | |
import matplotlib.pyplot as plt | |
import torch | |
from dataclasses import dataclass, asdict | |
import json | |
# Rnum = 1000 | |
num_time_steps = 500 | |
# # x = np.linspace(0.0,1.0,num=128) | |
# dx = 1.0/np.shape(x)[0] | |
# TSTEPS = np.linspace(0.0,2.0,num=num_time_steps) | |
# dt = 2.0/np.shape(TSTEPS)[0] | |
def get_dt(num_time_steps): | |
return 2.0/num_time_steps | |
dt = get_dt(num_time_steps) | |
def exact_solution(Rnum,t): | |
x = np.linspace(0.0,1.0,num=128) | |
t0 = np.exp(Rnum/8.0) | |
return (x/(t+1))/(1.0+np.sqrt((t+1)/t0)*np.exp(Rnum*(x*x)/(4.0*t+4))) | |
class ReDataset: | |
def __init__(self, | |
X: np.ndarray = None, | |
X_tau: np.ndarray = None, | |
t_values: np.ndarray = None, | |
tau_values: np.ndarray = None, | |
Re_values: np.ndarray = None): | |
self.X = X | |
self.X_tau = X_tau | |
self.t_values = t_values | |
self.tau_values = tau_values | |
self.Re_values = Re_values | |
def append(self, other): | |
self.X = np.concatenate([self.X, other.X]) if self.X is not None else other.X | |
self.X_tau = np.concatenate([self.X_tau, other.X_tau]) if self.X_tau is not None else other.X_tau | |
self.t_values = np.concatenate([self.t_values, other.t_values]) if self.t_values is not None else other.t_values | |
self.tau_values = np.concatenate([self.tau_values, other.tau_values]) if self.tau_values is not None else other.tau_values | |
self.Re_values = np.concatenate([self.Re_values, other.Re_values]) if self.Re_values is not None else other.Re_values | |
class IntervalSplit: | |
interpolation: tuple | |
extrapolation_left: tuple | |
extrapolation_right: tuple | |
def get_time_shifts(snapshots, tau_range=(100, 500), n_samples=100): | |
X = [] | |
X_tau = [] | |
tau_values = [] | |
while len(X) < n_samples: | |
tau = np.random.randint(*tau_range) | |
i = np.random.randint(0, len(snapshots)-tau) | |
X.append(snapshots[i]) | |
X_tau.append(snapshots[i+tau]) | |
tau_values.append(tau) | |
X = np.array(X) | |
X_tau = np.array(X_tau) | |
tau_values = np.array(tau_values) | |
return X, X_tau, tau_values | |
def prepare_Re_dataset(Re_range=(100, 2000), tau_range=(500, 1900), dt=dt, n_samples=5000): | |
X = [] | |
X_tau = [] | |
t_values = [] | |
tau_values = [] | |
Re_values = [] | |
TRANGE = (0,2) | |
while len(X) < n_samples: | |
# sample Re log uniformly | |
logRe = np.random.uniform(np.log(Re_range[0]), np.log(Re_range[1])) | |
Re = np.exp(logRe).round().astype(int) | |
t = np.random.uniform(*TRANGE) | |
x_t = exact_solution(Re, t) | |
# print('tau_range', tau_range) | |
tau = np.random.randint(*tau_range) | |
x_tau = exact_solution(Re, t+(tau*dt)) | |
X.append(x_t) | |
X_tau.append(x_tau) | |
t_values.append(t) | |
tau_values.append(tau) | |
Re_values.append(Re) | |
X = np.array(X) | |
X_tau = np.array(X_tau) | |
t_values = np.array(t_values) | |
tau_values = np.array(tau_values) | |
Re_values = np.array(Re_values) | |
# return X, X_tau, tau_values, Re_values | |
dataset = ReDataset(X, X_tau, t_values, tau_values, Re_values) | |
return dataset | |
def train_test_split_range(interval, interpolation_span=0.1, extrapolation_left_span=0.1, extrapolation_right_span=0.1): | |
""" | |
Split the range into train and test ranges | |
We have three test folds: | |
1. Interpolation fold: Re and tau values are within the training (min, max) range but not in the training set | |
We sample an interval of length x_interpolation_span% randomly from the total range | |
2. Extrapolation fold: Re and tau values are outside the training (min, max) range | |
We sample two intervals of length x_extrapolation_right_span% and x_extrapolation_left_span% from the total range | |
3. Validation fold: Re and tau values are randomly sampled from the total set | |
Overall interval looks like: | |
Extrapolation_left_test | normal | Interpolation_test | normal | Extrapolation_right_test | |
(min, extrapolation_left) | (extraplation_left, interpolation_min) | (interpolation_min, interpolation_max) | (interpolation_max, extrapolation_right) | (extrapolation_right, max) | |
and | |
train, val = split(normal, val_split) | |
""" | |
r_min, r_max = interval | |
length = (r_max-r_min) | |
extra_left_length = extrapolation_left_span * length | |
extra_right_length = extrapolation_right_span * length | |
inter_length = interpolation_span * length | |
extrapolation_left = (r_min, r_min + extra_left_length) | |
extrapolation_right = (r_max - extra_right_length, r_max) | |
interpolation_min = np.random.uniform(extrapolation_left[1], extrapolation_right[0] - inter_length) | |
interpolation = (interpolation_min, interpolation_min + inter_length) | |
train_ranges = [(extrapolation_left[1], interpolation[0]), (interpolation[1], extrapolation_right[0])] | |
return IntervalSplit(interpolation, extrapolation_left, extrapolation_right), train_ranges | |
def get_train_ranges(interval_split): | |
return [ | |
(interval_split.extrapolation_left[1], interval_split.interpolation[0]), | |
(interval_split.interpolation[1], interval_split.extrapolation_right[0]) | |
] | |
# def get_dataset_from_ranges(train_ranges): | |
# dataset = ReDataset() | |
# for re_train_range, tau_train_range in zip(Re_train_ranges, tau_train_ranges): | |
# train_dataset = prepare_Re_dataset(Re_range=re_train_range, tau_range=tau_train_range, n_samples=n_samples_train) | |
# dataset.append(train_dataset) | |
# return dataset | |
def get_train_val_test_folds(Re_range, tau_range, | |
re_interpolation_span=0.10, | |
re_extrapolation_left_span=0.1, | |
re_extrapolation_right_span=0.10, | |
tau_interpolation_span=0.10, | |
tau_extrapolation_left_span=0.1, | |
tau_extrapolation_right_span=0.10, | |
n_samples_train=1000000, | |
val_split=0.2): | |
Re_interval_split, Re_train_ranges = train_test_split_range(Re_range, re_interpolation_span, re_extrapolation_left_span, re_extrapolation_right_span) | |
tau_interval_split, tau_train_ranges = train_test_split_range(tau_range, tau_interpolation_span, tau_extrapolation_left_span, tau_extrapolation_right_span) | |
# print(Re_interval_split, Re_train_ranges) | |
# print(tau_interval_split, tau_train_ranges) | |
# prepare train dataset | |
dataset = ReDataset() | |
for re_train_range, tau_train_range in zip(Re_train_ranges, tau_train_ranges): | |
train_dataset = prepare_Re_dataset(Re_range=re_train_range, tau_range=tau_train_range, n_samples=n_samples_train) | |
dataset.append(train_dataset) | |
inds = np.arange(len(dataset.X)) | |
np.random.shuffle(inds) | |
train_inds = inds[:int(len(inds)*(1-val_split))] | |
val_inds = inds[int(len(inds)*(1-val_split)):] | |
dataset_train = ReDataset(dataset.X[train_inds], dataset.X_tau[train_inds], dataset.t_values[train_inds], dataset.tau_values[train_inds], dataset.Re_values[train_inds]) | |
dataset_val = ReDataset(dataset.X[val_inds], dataset.X_tau[val_inds],dataset.t_values[val_inds], dataset.tau_values[val_inds], dataset.Re_values[val_inds]) | |
return dataset_train, dataset_val, Re_interval_split, tau_interval_split | |
def plot_sample(dataset, i): | |
X = dataset.X | |
X_tau = dataset.X_tau | |
Tau = dataset.tau_values | |
Re_total = dataset.Re_values | |
plt.plot(X[i], label = "Initial State") | |
plt.plot(X_tau[i], label = "Mapped State") | |
plt.title(f'Tau: {Tau[i]}, Re: {Re_total[i]}') | |
plt.legend() | |
plt.show() | |
def save_to_path(path, dataset_train, dataset_val, Re_interval_split, tau_interval_split): | |
if not os.path.exists(path): | |
os.makedirs(path) | |
# save dataset_train, dataset_val, Re_interval_split, tau_interval_split to pkl files | |
dataset_train_path = os.path.join(path, 'dataset_train.pkl') | |
dataset_val_path = os.path.join(path, 'dataset_val.pkl') | |
Re_interval_split_path = os.path.join(path, 'Re_interval_split.json') | |
tau_interval_split_path = os.path.join(path, 'tau_interval_split.json') | |
with open(dataset_train_path, 'wb') as f: | |
pickle.dump(dataset_train, f) | |
with open(dataset_val_path, 'wb') as f: | |
pickle.dump(dataset_val, f) | |
with open(Re_interval_split_path, 'w') as f: | |
json.dump(asdict(Re_interval_split), f) | |
with open(tau_interval_split_path, 'w') as f: | |
json.dump(asdict(tau_interval_split), f) | |
def load_from_path(path): | |
dataset_train_path = os.path.join(path, 'dataset_train.pkl') | |
dataset_val_path = os.path.join(path, 'dataset_val.pkl') | |
Re_interval_split_path = os.path.join(path, 'Re_interval_split.json') | |
tau_interval_split_path = os.path.join(path, 'tau_interval_split.json') | |
with open(dataset_train_path, 'rb') as f: | |
dataset_train = pickle.load(f) | |
with open(dataset_val_path, 'rb') as f: | |
dataset_val = pickle.load(f) | |
with open(Re_interval_split_path, 'r') as f: | |
Re_interval_split = json.load(f) | |
Re_interval_split = IntervalSplit(**Re_interval_split) | |
with open(tau_interval_split_path, 'r') as f: | |
tau_interval_split = json.load(f) | |
tau_interval_split = IntervalSplit(**tau_interval_split) | |
return dataset_train, dataset_val, Re_interval_split, tau_interval_split | |
def main(): | |
#Re_range = (100, 3000) | |
#num_time_steps = 500 | |
#tau_range = (175, 425) | |
#dataset_train, dataset_val, Re_interval_split, tau_interval_split = get_train_val_test_folds(Re_range, tau_range) | |
#save_to_path('data', dataset_train, dataset_val, Re_interval_split, tau_interval_split) | |
load_from_path('data') | |
if __name__ == '__main__': | |
main() | |