Spaces:
Sleeping
Sleeping
Khalid Rafiq
commited on
Commit
·
f270024
1
Parent(s):
3b01b0f
Convert app.ipynb to app.py for faster execution
Browse files
app.py
CHANGED
@@ -1,14 +1,375 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
-
import
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# coding: utf-8
|
3 |
+
|
4 |
+
# In[2]:
|
5 |
+
|
6 |
+
|
7 |
+
import time
|
8 |
+
import torch
|
9 |
+
import warnings
|
10 |
+
import numpy as np
|
11 |
import gradio as gr
|
12 |
+
import matplotlib.pyplot as plt
|
13 |
+
|
14 |
+
# Import Burgers' equation components
|
15 |
+
from data_burgers import exact_solution as exact_solution_burgers
|
16 |
+
from model_io_burgers import load_model
|
17 |
+
from model_v2 import Encoder, Decoder, Propagator_concat as Propagator, Model
|
18 |
+
from LSTM_model import AE_Encoder, AE_Decoder, AE_Model, PytorchLSTM
|
19 |
+
|
20 |
+
# Import Advection-Diffusion components
|
21 |
+
from data_adv_dif import exact_solution as exact_solution_adv_dif
|
22 |
+
from model_io_adv_dif import load_model as load_model_adv_dif
|
23 |
+
from model_adv_dif import Encoder as Encoder2D, Decoder as Decoder2D, Propagator_concat as Propagator2D, Model as Model2D
|
24 |
+
|
25 |
+
warnings.filterwarnings("ignore")
|
26 |
+
|
27 |
+
# ========== Burgers' Equation Setup ==========
|
28 |
+
def get_burgers_model(input_dim, latent_dim):
|
29 |
+
encoder = Encoder(input_dim, latent_dim)
|
30 |
+
decoder = Decoder(latent_dim, input_dim)
|
31 |
+
propagator = Propagator(latent_dim)
|
32 |
+
return Model(encoder, decoder, propagator)
|
33 |
+
|
34 |
+
flexi_prop_model = get_burgers_model(128, 2)
|
35 |
+
checkpoint = torch.load("../1d_viscous_burgers/FlexiPropagator_2025-02-01-10-28-34_3e9656b5_best.pt", map_location='cpu')
|
36 |
+
flexi_prop_model.load_state_dict(checkpoint['model_state_dict'])
|
37 |
+
flexi_prop_model.eval()
|
38 |
+
|
39 |
+
# AE LSTM models
|
40 |
+
ae_encoder = AE_Encoder(128)
|
41 |
+
ae_decoder = AE_Decoder(2, 128)
|
42 |
+
ae_model = AE_Model(ae_encoder, ae_decoder)
|
43 |
+
lstm_model = PytorchLSTM()
|
44 |
+
|
45 |
+
ae_encoder.load_state_dict(torch.load("../1d_viscous_burgers/LSTM_model/ae_encoder_weights.pth", map_location='cpu'))
|
46 |
+
ae_decoder.load_state_dict(torch.load("../1d_viscous_burgers/LSTM_model/ae_decoder_weights.pth", map_location='cpu'))
|
47 |
+
ae_model.load_state_dict(torch.load("../1d_viscous_burgers/LSTM_model/ae_model.pth", map_location='cpu'))
|
48 |
+
lstm_model.load_state_dict(torch.load("../1d_viscous_burgers/LSTM_model/lstm_weights.pth", map_location='cpu'))
|
49 |
+
|
50 |
+
# ========== Helper Functions Burgers ==========
|
51 |
+
def exacts_equals_timewindow(t_0, Re, time_window=40):
|
52 |
+
dt = 2 / 500
|
53 |
+
solutions = [exact_solution_burgers(Re, t) for t in (t_0 + np.arange(0, time_window) * dt)]
|
54 |
+
solns = torch.tensor(solutions, dtype=torch.float32)[None, :, :]
|
55 |
+
latents = ae_encoder(solns)
|
56 |
+
re_normalized = Re / 1000
|
57 |
+
re_repeated = torch.ones(1, time_window, 1) * re_normalized
|
58 |
+
return torch.cat((latents, re_repeated), dim=2), latents, solns
|
59 |
+
|
60 |
+
# Precompute contour plots
|
61 |
+
z1_vals = np.linspace(-10, 0.5, 200)
|
62 |
+
z2_vals = np.linspace(5, 32, 200)
|
63 |
+
Z1, Z2 = np.meshgrid(z1_vals, z2_vals)
|
64 |
+
latent_grid = np.stack([Z1.ravel(), Z2.ravel()], axis=1)
|
65 |
+
|
66 |
+
# Convert to tensor for decoding
|
67 |
+
latent_tensors = torch.tensor(latent_grid, dtype=torch.float32)
|
68 |
+
|
69 |
+
# Decode latent vectors and compute properties
|
70 |
+
with torch.no_grad():
|
71 |
+
decoded_signals = flexi_prop_model.decoder(latent_tensors)
|
72 |
+
|
73 |
+
sharpness = []
|
74 |
+
peak_positions = []
|
75 |
+
x_vals = np.linspace(0, 2, decoded_signals.shape[1])
|
76 |
+
dx = x_vals[1] - x_vals[0]
|
77 |
+
|
78 |
+
for signal in decoded_signals.numpy():
|
79 |
+
grad_u = np.gradient(signal, dx)
|
80 |
+
sharpness.append(np.max(np.abs(grad_u)))
|
81 |
+
peak_positions.append(x_vals[np.argmax(signal)])
|
82 |
+
|
83 |
+
sharpness = np.array(sharpness).reshape(Z1.shape)
|
84 |
+
peak_positions = np.array(peak_positions).reshape(Z1.shape)
|
85 |
+
|
86 |
+
def plot_burgers_comparison(Re, tau, t_0):
|
87 |
+
dt = 2.0 / 500.0
|
88 |
+
t_final = t_0 + tau * dt
|
89 |
+
x_exact = exact_solution_burgers(Re, t_final)
|
90 |
+
|
91 |
+
tau_tensor, Re_tensor, xt = torch.tensor([tau]).float()[:, None], torch.tensor([Re]).float()[:, None], torch.tensor([exact_solution_burgers(Re, t_0)]).float()[:, None]
|
92 |
+
|
93 |
+
with torch.no_grad():
|
94 |
+
_, x_hat_tau, *_ = flexi_prop_model(xt, tau_tensor, Re_tensor)
|
95 |
+
|
96 |
+
latent_for_lstm, *_ = exacts_equals_timewindow(t_0, Re)
|
97 |
+
with torch.no_grad():
|
98 |
+
for _ in range(40, tau):
|
99 |
+
pred = lstm_model(latent_for_lstm)
|
100 |
+
pred_with_re = torch.cat((pred, torch.tensor([[Re / 1000]], dtype=torch.float32)), dim=1)
|
101 |
+
latent_for_lstm = torch.cat((latent_for_lstm[:, 1:, :], pred_with_re.unsqueeze(0)), dim=1)
|
102 |
+
final_pred_high_dim = ae_decoder(pred.unsqueeze(0))
|
103 |
+
|
104 |
+
fig, ax = plt.subplots(figsize=(9, 5))
|
105 |
+
ax.plot(xt.squeeze(), '--', linewidth=3, alpha=0.5, color="C0")
|
106 |
+
ax.plot(x_hat_tau.squeeze(), 'D', markersize=5, color="C2")
|
107 |
+
ax.plot(final_pred_high_dim.squeeze().detach().numpy(), '^', markersize=5, color="C1")
|
108 |
+
ax.plot(x_exact.squeeze(), linewidth=2, alpha=0.5, color="Black")
|
109 |
+
ax.set_title(f"Comparison ($t_0$={t_0:.2f} → $t_f$={t_final:.2f}), τ={tau}", fontsize=14)
|
110 |
+
ax.legend(["Initial", "Flexi-Prop", "AE LSTM", "True"])
|
111 |
+
return fig
|
112 |
+
|
113 |
+
def burgers_update(Re, tau, t0):
|
114 |
+
fig1 = plot_burgers_comparison(Re, tau, t0)
|
115 |
+
|
116 |
+
# Timing calculations
|
117 |
+
start = time.time()
|
118 |
+
_ = flexi_prop_model(torch.randn(1, 1, 128), torch.tensor([[tau]]), torch.tensor([[Re]]))
|
119 |
+
flexi_time = time.time() - start
|
120 |
+
|
121 |
+
start = time.time()
|
122 |
+
latent_for_lstm, _, _ = exacts_equals_timewindow(t0, Re, 40)
|
123 |
+
encode_time = time.time() - start
|
124 |
+
|
125 |
+
start = time.time()
|
126 |
+
with torch.no_grad():
|
127 |
+
for _ in range(40, tau):
|
128 |
+
pred = lstm_model(latent_for_lstm)
|
129 |
+
pred_with_re = torch.cat((pred, torch.tensor([[Re / 1000]], dtype=torch.float32)), dim=1)
|
130 |
+
latent_for_lstm = torch.cat((latent_for_lstm[:, 1:, :], pred_with_re.unsqueeze(0)), dim=1)
|
131 |
+
recursion_time = time.time() - start
|
132 |
+
|
133 |
+
start = time.time()
|
134 |
+
final_pred_high_dim = ae_decoder(pred.unsqueeze(0))
|
135 |
+
decode_time = time.time() - start
|
136 |
+
|
137 |
+
ae_lstm_total_time = encode_time + recursion_time + decode_time
|
138 |
+
time_ratio = ae_lstm_total_time / flexi_time
|
139 |
+
|
140 |
+
# Time plot
|
141 |
+
fig, ax = plt.subplots(figsize=(11, 6))
|
142 |
+
ax.bar(["Flexi-Prop", "AE LSTM (Encode)", "AE LSTM (Recursion)", "AE LSTM (Decode)", "AE LSTM (Total)"],
|
143 |
+
[flexi_time, encode_time, recursion_time, decode_time, ae_lstm_total_time],
|
144 |
+
color=["C0", "C1", "C2", "C3", "C4"])
|
145 |
+
ax.set_ylabel("Time (s)", fontsize=14)
|
146 |
+
ax.set_title("Computation Time Comparison", fontsize=14)
|
147 |
+
ax.grid(alpha=0.3)
|
148 |
+
|
149 |
+
# Latent space visualization
|
150 |
+
latent_fig = plot_latent_interpretation(Re, tau, t0)
|
151 |
+
|
152 |
+
return fig1, fig, time_ratio, latent_fig
|
153 |
+
|
154 |
+
def plot_latent_interpretation(Re, tau, t_0):
|
155 |
+
tau_tensor = torch.tensor([tau]).float()[:, None]
|
156 |
+
Re_tensor = torch.tensor([Re]).float()[:, None]
|
157 |
+
x_t = exact_solution_burgers(Re, t_0)
|
158 |
+
xt = torch.tensor([x_t]).float()[:, None]
|
159 |
+
|
160 |
+
with torch.no_grad():
|
161 |
+
_, _, _, _, z_tau = flexi_prop_model(xt, tau_tensor, Re_tensor)
|
162 |
+
|
163 |
+
z_tau = z_tau.squeeze().numpy()
|
164 |
+
|
165 |
+
fig, axes = plt.subplots(1, 2, figsize=(9, 3))
|
166 |
+
|
167 |
+
# Sharpness Plot
|
168 |
+
c1 = axes[0].pcolormesh(Z1, Z2, sharpness, cmap='plasma', shading='gouraud')
|
169 |
+
axes[0].scatter(z_tau[0], z_tau[1], color='red', marker='o', s=50, label="Current State")
|
170 |
+
axes[0].set_ylabel("$Z_2$", fontsize=14)
|
171 |
+
axes[0].set_title("Sharpness Encoding", fontsize=14)
|
172 |
+
fig.colorbar(c1, ax=axes[0])
|
173 |
+
axes[0].legend()
|
174 |
+
|
175 |
+
# Peak Position Plot
|
176 |
+
c2 = axes[1].pcolormesh(Z1, Z2, peak_positions, cmap='viridis', shading='gouraud')
|
177 |
+
axes[1].scatter(z_tau[0], z_tau[1], color='red', marker='o', s=50, label="Current State")
|
178 |
+
axes[1].set_title("Peak position Encoding", fontsize=14)
|
179 |
+
fig.colorbar(c2, ax=axes[1], label="Peak Position")
|
180 |
+
|
181 |
+
# Remove redundant y-axis labels on the second plot for better aesthetics
|
182 |
+
axes[1].set_yticklabels([])
|
183 |
+
|
184 |
+
# Set a single x-axis label centered below both plots
|
185 |
+
fig.supxlabel("$Z_1$", fontsize=14)
|
186 |
+
|
187 |
+
return fig
|
188 |
+
|
189 |
+
# ========== Advection-Diffusion Setup ==========
|
190 |
+
def get_adv_dif_model(latent_dim, output_dim):
|
191 |
+
encoder = Encoder2D(latent_dim)
|
192 |
+
decoder = Decoder2D(latent_dim)
|
193 |
+
propagator = Propagator2D(latent_dim)
|
194 |
+
return Model2D(encoder, decoder, propagator)
|
195 |
+
|
196 |
+
adv_dif_model = get_adv_dif_model(3, 128)
|
197 |
+
adv_dif_model, _, _, _ = load_model_adv_dif(
|
198 |
+
"../2D_adv_dif/FlexiPropagator_2D_2025-01-30-12-11-01_0aee8fb0_best.pt",
|
199 |
+
adv_dif_model
|
200 |
+
)
|
201 |
+
|
202 |
+
def generate_3d_visualization(Re, t_0, tau):
|
203 |
+
dt = 2 / 500
|
204 |
+
t = t_0 + tau * dt
|
205 |
+
|
206 |
+
U_initial = exact_solution_adv_dif(Re, t_0)
|
207 |
+
U_evolved = exact_solution_adv_dif(Re, t)
|
208 |
+
|
209 |
+
if np.isnan(U_initial).any() or np.isnan(U_evolved).any():
|
210 |
+
return None
|
211 |
+
|
212 |
+
fig3d = plt.figure(figsize=(12, 5))
|
213 |
+
ax3d = fig3d.add_subplot(111, projection='3d')
|
214 |
+
|
215 |
+
x_vals = np.linspace(-2, 2, U_initial.shape[1])
|
216 |
+
y_vals = np.linspace(-2, 2, U_initial.shape[0])
|
217 |
+
X, Y = np.meshgrid(x_vals, y_vals)
|
218 |
+
|
219 |
+
surf1 = ax3d.plot_surface(X, Y, U_initial, cmap="viridis", alpha=0.6, label="Initial")
|
220 |
+
surf2 = ax3d.plot_surface(X, Y, U_evolved, cmap="plasma", alpha=0.8, label="Evolved")
|
221 |
+
|
222 |
+
ax3d.set_xlim(-3, 3)
|
223 |
+
ax3d.set_xlabel("x")
|
224 |
+
ax3d.set_ylabel("y")
|
225 |
+
ax3d.set_zlabel("u(x,y,t)")
|
226 |
+
ax3d.view_init(elev=25, azim=-45)
|
227 |
+
ax3d.set_box_aspect((2,1,1))
|
228 |
+
|
229 |
+
fig3d.colorbar(surf1, ax=ax3d, shrink=0.5, label="Initial")
|
230 |
+
fig3d.colorbar(surf2, ax=ax3d, shrink=0.5, label="Evolved")
|
231 |
+
ax3d.set_title(f"Solution Evolution\nInitial ($t_0$={t_0:.2f}) vs Evolved ($t_f$={t:.2f})")
|
232 |
+
|
233 |
+
plt.tight_layout()
|
234 |
+
plt.close(fig3d)
|
235 |
+
return fig3d
|
236 |
+
|
237 |
+
def adv_dif_comparison(Re, t_0, tau):
|
238 |
+
dt = 2 / 500
|
239 |
+
exact_initial = exact_solution_adv_dif(Re, t_0)
|
240 |
+
exact_final = exact_solution_adv_dif(Re, t_0 + tau * dt)
|
241 |
+
|
242 |
+
if np.isnan(exact_initial).any() or np.isnan(exact_final).any():
|
243 |
+
return None
|
244 |
+
|
245 |
+
x_in = torch.tensor(exact_initial, dtype=torch.float32)[None, None, :, :]
|
246 |
+
Re_in = torch.tensor([[Re]], dtype=torch.float32)
|
247 |
+
tau_in = torch.tensor([[tau]], dtype=torch.float32)
|
248 |
+
|
249 |
+
with torch.no_grad():
|
250 |
+
x_hat, x_hat_tau, *_ = adv_dif_model(x_in, tau_in, Re_in)
|
251 |
+
|
252 |
+
pred = x_hat_tau.squeeze().numpy()
|
253 |
+
if pred.shape != exact_final.shape:
|
254 |
+
return None
|
255 |
+
|
256 |
+
mse = np.square(pred - exact_final)
|
257 |
+
|
258 |
+
fig, axs = plt.subplots(1, 3, figsize=(15, 4))
|
259 |
+
|
260 |
+
for ax, (data, title) in zip(axs, [(pred, "Model Prediction"),
|
261 |
+
(exact_final, "Exact Solution"),
|
262 |
+
(mse, "MSE Error")]):
|
263 |
+
if title == "MSE Error":
|
264 |
+
im = ax.imshow(data, cmap="viridis", vmin=0, vmax=1e-2)
|
265 |
+
plt.colorbar(im, ax=ax, fraction=0.075)
|
266 |
+
else:
|
267 |
+
im = ax.imshow(data, cmap="jet")
|
268 |
+
|
269 |
+
ax.set_title(title)
|
270 |
+
ax.axis("off")
|
271 |
+
|
272 |
+
plt.tight_layout()
|
273 |
+
plt.close(fig)
|
274 |
+
return fig
|
275 |
+
|
276 |
+
def update_initial_plot(Re, t_0):
|
277 |
+
exact_initial = exact_solution_adv_dif(Re, t_0)
|
278 |
+
fig, ax = plt.subplots(figsize=(5, 5))
|
279 |
+
im = ax.imshow(exact_initial, cmap='jet')
|
280 |
+
plt.colorbar(im, ax=ax)
|
281 |
+
ax.set_title('Initial State')
|
282 |
+
return fig
|
283 |
+
|
284 |
+
# ========== Gradio Interface ==========
|
285 |
+
with gr.Blocks(title="Flexi-Propagator: PDE Prediction Suite") as app:
|
286 |
+
gr.Markdown("# Flexi-Propagator: Unified PDE Prediction Interface")
|
287 |
+
|
288 |
+
with gr.Tabs():
|
289 |
+
# 1D Burgers' Equation Tab
|
290 |
+
with gr.Tab("1D Burgers' Equation"):
|
291 |
+
gr.Markdown(r"""
|
292 |
+
## 🚀 Flexi-Propagator: Single-Shot Prediction for Nonlinear PDEs
|
293 |
+
**Governing Equation (1D Burgers' Equation):**
|
294 |
+
$$
|
295 |
+
\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = \nu \frac{\partial^2 u}{\partial x^2}
|
296 |
+
$$
|
297 |
+
**Key Advantages:**
|
298 |
+
✔️ **60-150× faster** than AE-LSTM baselines
|
299 |
+
✔️ **Parametric control**: Embeds system parameters in latent space
|
300 |
+
|
301 |
+
**Physically Interpretable Latent Space - Disentanglement:**
|
302 |
+
<div align="left">
|
303 |
+
$$
|
304 |
+
Z_1 \text{ Encodes Peak Location, } Z_2 \text{ Predominantly Encodes Re (Sharpness)}
|
305 |
+
$$
|
306 |
+
</div>
|
307 |
+
|
308 |
+
""")
|
309 |
+
|
310 |
+
with gr.Row():
|
311 |
+
with gr.Column():
|
312 |
+
re_burgers = gr.Slider(425, 2350, 1040, label="Reynolds Number")
|
313 |
+
tau_burgers = gr.Slider(150, 450, 315, label="Time Steps (τ)")
|
314 |
+
t0_burgers = gr.Number(0.4, label="Initial Time")
|
315 |
+
latent_plot = gr.Plot(label="Latent Space Dynamics")
|
316 |
+
with gr.Column():
|
317 |
+
burgers_plot = gr.Plot()
|
318 |
+
time_plot = gr.Plot()
|
319 |
+
ratio_out = gr.Number(label="Time Ratio (Flexi Prop/AE LSTM)")
|
320 |
+
|
321 |
+
# with gr.Row():
|
322 |
+
# latent_plot = gr.Plot(label="Latent Space Dynamics")
|
323 |
+
|
324 |
+
re_burgers.change(burgers_update, [re_burgers, tau_burgers, t0_burgers],
|
325 |
+
[burgers_plot, time_plot, ratio_out, latent_plot])
|
326 |
+
tau_burgers.change(burgers_update, [re_burgers, tau_burgers, t0_burgers],
|
327 |
+
[burgers_plot, time_plot, ratio_out, latent_plot])
|
328 |
+
t0_burgers.change(burgers_update, [re_burgers, tau_burgers, t0_burgers],
|
329 |
+
[burgers_plot, time_plot, ratio_out, latent_plot])
|
330 |
+
|
331 |
+
# 2D Advection-Diffusion Tab
|
332 |
+
with gr.Tab("2D Advection-Diffusion"):
|
333 |
+
gr.Markdown(r"""
|
334 |
+
## 🌪️ 2D Advection-Diffusion Visualization
|
335 |
+
**Governing Equation:**
|
336 |
+
$$
|
337 |
+
\frac{\partial u}{\partial t} + c \frac{\partial u}{\partial x} = \nu \left( \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right)
|
338 |
+
$$
|
339 |
+
""")
|
340 |
+
|
341 |
+
with gr.Row():
|
342 |
+
with gr.Column(scale=1):
|
343 |
+
re_adv = gr.Slider(1, 10, 9, label="Reynolds Number (Re)")
|
344 |
+
t0_adv = gr.Number(0.45, label="Initial Time")
|
345 |
+
tau_adv = gr.Slider(150, 425, 225, label="Tau (τ)")
|
346 |
+
initial_plot_adv = gr.Plot(label="Initial State")
|
347 |
+
|
348 |
+
with gr.Column(scale=3):
|
349 |
+
with gr.Row():
|
350 |
+
three_d_plot_adv = gr.Plot(label="3D Evolution")
|
351 |
+
with gr.Row():
|
352 |
+
comparison_plots_adv = gr.Plot(label="Model Comparison")
|
353 |
+
|
354 |
+
def adv_update(Re, t0, tau):
|
355 |
+
return (
|
356 |
+
generate_3d_visualization(Re, t0, tau),
|
357 |
+
adv_dif_comparison(Re, t0, tau),
|
358 |
+
update_initial_plot(Re, t0)
|
359 |
+
)
|
360 |
+
|
361 |
+
for component in [re_adv, t0_adv, tau_adv]:
|
362 |
+
component.change(adv_update, [re_adv, t0_adv, tau_adv],
|
363 |
+
[three_d_plot_adv, comparison_plots_adv, initial_plot_adv])
|
364 |
+
|
365 |
+
app.load(lambda: adv_update(8, 0.35, 225),
|
366 |
+
outputs=[three_d_plot_adv, comparison_plots_adv, initial_plot_adv])
|
367 |
+
|
368 |
+
app.launch()
|
369 |
+
|
370 |
+
|
371 |
+
# In[ ]:
|
372 |
+
|
373 |
+
|
374 |
+
|
375 |
+
|