Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -6,7 +6,6 @@ import numpy as np
|
|
6 |
import matplotlib.pyplot as plt
|
7 |
import gradio as gr
|
8 |
|
9 |
-
# Creating a numpy array of shape (8, 16, 1)
|
10 |
flow_field = np.ones((128,256), dtype = np.uint8)
|
11 |
|
12 |
# Changing the left input side
|
@@ -18,6 +17,14 @@ flow_field[0,:] = 2
|
|
18 |
# Changing the bottom layer
|
19 |
flow_field[-1,:] = 2
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
def nvs_loss(y_pred, rho=10, nu=0.0001): #arbitary rho and nu(Later use values of air)
|
22 |
u,v,p = tf.split(y_pred, 3, axis=3)
|
23 |
|
@@ -172,7 +179,6 @@ def fill_shape_with_pixels(img): #img is taken by gradio as uint8
|
|
172 |
test_img = patch_stiching(flooded_image, h, w, x0, y0)
|
173 |
|
174 |
# Loading and Compiling the Model
|
175 |
-
#model_path = "/content/drive/MyDrive/Pinns_Loss_file.h5"
|
176 |
model_path = "Pinns_Loss_file.h5"
|
177 |
model = load_model(model_path, compile = False)
|
178 |
model.compile(loss=custom_loss, optimizer=tf.keras.optimizers.AdamW(learning_rate = 0.0001), metrics=['mae', 'cosine_proximity'])
|
@@ -181,6 +187,11 @@ def fill_shape_with_pixels(img): #img is taken by gradio as uint8
|
|
181 |
prediction = model.predict(test_img) # (prediction.shape = (1, 128, 256, 3))
|
182 |
u_pred, v_pred, p_pred = np.split(prediction, 3, axis=3) # shape of u_pred, v_pred, p_pred = (1, 128, 256, 1)
|
183 |
|
|
|
|
|
|
|
|
|
|
|
184 |
# Making test_img in shape required by zero_pixel_location
|
185 |
req_img = squeeze_function(test_img)
|
186 |
|
@@ -192,7 +203,10 @@ def fill_shape_with_pixels(img): #img is taken by gradio as uint8
|
|
192 |
u_profile = u_pred[0][:,:,0] # shape of u profile to compatible shape (H, W) = (128, 256)
|
193 |
v_profile = v_pred[0][:,:,0]
|
194 |
p_profile = p_pred[0][:,:,0]
|
195 |
-
p_profile[p_profile>
|
|
|
|
|
|
|
196 |
|
197 |
# Creating a copy of the above profiles-
|
198 |
u_profile_dash = np.copy(u_profile)
|
@@ -217,7 +231,7 @@ def fill_shape_with_pixels(img): #img is taken by gradio as uint8
|
|
217 |
velocity = np.sqrt(u_profile_dash_1**2 + v_profile_dash_1**2)
|
218 |
ax = plt.subplot()
|
219 |
ax.imshow(velocity, cmap = 'gray', extent = (0,256, 0,128))
|
220 |
-
q = ax.quiver(X[5::
|
221 |
ax.quiverkey(q, X=0.9, Y=1.07, U=2,
|
222 |
label='m/s', labelpos='E')
|
223 |
plt.title("Velocity distribution", fontsize = 11)
|
@@ -226,7 +240,7 @@ def fill_shape_with_pixels(img): #img is taken by gradio as uint8
|
|
226 |
|
227 |
# StreamLine Plot
|
228 |
streamline_plot = plt.figure(figsize = (14,6), edgecolor = "gray")
|
229 |
-
plt.streamplot(X, Y, u_profile_dash, v_profile_dash, density =
|
230 |
plt.axis('scaled')
|
231 |
plt.title("Streamline Plot", fontsize = 11)
|
232 |
plt.xlabel("Length of Channel", fontsize = 11)
|
@@ -248,9 +262,10 @@ def fill_shape_with_pixels(img): #img is taken by gradio as uint8
|
|
248 |
with gr.Blocks(theme="Taithrah/Minimal") as demo:
|
249 |
gr.Markdown(
|
250 |
"""
|
251 |
-
# Physics Constrained DNN for Predicting Mean Turbulent Flows
|
252 |
The App solves 2-D incompressible steady state NS equations for any given 2-D closed geometry. Geometry needs to be drawn around the center of the patch.\n
|
253 |
It predicts the streamlines,horizontal & vertical velocity profiles and the pressure profiles using a hybrid loss function.\n
|
|
|
254 |
""")
|
255 |
with gr.Row():
|
256 |
with gr.Column():
|
|
|
6 |
import matplotlib.pyplot as plt
|
7 |
import gradio as gr
|
8 |
|
|
|
9 |
flow_field = np.ones((128,256), dtype = np.uint8)
|
10 |
|
11 |
# Changing the left input side
|
|
|
17 |
# Changing the bottom layer
|
18 |
flow_field[-1,:] = 2
|
19 |
|
20 |
+
mean_u = 0.075003795
|
21 |
+
mean_v = -0.000036
|
22 |
+
mean_p = 0.004301
|
23 |
+
|
24 |
+
std_dev_u = 0.04605
|
25 |
+
std_dev_v = 0.013812
|
26 |
+
std_dev_p = 0.007917
|
27 |
+
|
28 |
def nvs_loss(y_pred, rho=10, nu=0.0001): #arbitary rho and nu(Later use values of air)
|
29 |
u,v,p = tf.split(y_pred, 3, axis=3)
|
30 |
|
|
|
179 |
test_img = patch_stiching(flooded_image, h, w, x0, y0)
|
180 |
|
181 |
# Loading and Compiling the Model
|
|
|
182 |
model_path = "Pinns_Loss_file.h5"
|
183 |
model = load_model(model_path, compile = False)
|
184 |
model.compile(loss=custom_loss, optimizer=tf.keras.optimizers.AdamW(learning_rate = 0.0001), metrics=['mae', 'cosine_proximity'])
|
|
|
187 |
prediction = model.predict(test_img) # (prediction.shape = (1, 128, 256, 3))
|
188 |
u_pred, v_pred, p_pred = np.split(prediction, 3, axis=3) # shape of u_pred, v_pred, p_pred = (1, 128, 256, 1)
|
189 |
|
190 |
+
# De-Normalizing teh Data:
|
191 |
+
u_pred = ((u_pred*std_dev_u) + mean_u)
|
192 |
+
v_pred = ((v_pred*std_dev_v) + mean_v)
|
193 |
+
p_pred = ((p_pred*std_dev_p) + mean_p)
|
194 |
+
|
195 |
# Making test_img in shape required by zero_pixel_location
|
196 |
req_img = squeeze_function(test_img)
|
197 |
|
|
|
203 |
u_profile = u_pred[0][:,:,0] # shape of u profile to compatible shape (H, W) = (128, 256)
|
204 |
v_profile = v_pred[0][:,:,0]
|
205 |
p_profile = p_pred[0][:,:,0]
|
206 |
+
p_profile[p_profile>0.02] = 0.02
|
207 |
+
hist, bins = np.histogram(p_profile, bins=20)
|
208 |
+
print(hist)
|
209 |
+
print(bins)
|
210 |
|
211 |
# Creating a copy of the above profiles-
|
212 |
u_profile_dash = np.copy(u_profile)
|
|
|
231 |
velocity = np.sqrt(u_profile_dash_1**2 + v_profile_dash_1**2)
|
232 |
ax = plt.subplot()
|
233 |
ax.imshow(velocity, cmap = 'gray', extent = (0,256, 0,128))
|
234 |
+
q = ax.quiver(X[5::5,5::5], Y[5::5,5::5], u_profile_dash[5::5,5::5], v_profile_dash[5::5,5::5], pivot = 'middle', color = 'red')
|
235 |
ax.quiverkey(q, X=0.9, Y=1.07, U=2,
|
236 |
label='m/s', labelpos='E')
|
237 |
plt.title("Velocity distribution", fontsize = 11)
|
|
|
240 |
|
241 |
# StreamLine Plot
|
242 |
streamline_plot = plt.figure(figsize = (14,6), edgecolor = "gray")
|
243 |
+
plt.streamplot(X, Y, u_profile_dash, v_profile_dash, density = 4)
|
244 |
plt.axis('scaled')
|
245 |
plt.title("Streamline Plot", fontsize = 11)
|
246 |
plt.xlabel("Length of Channel", fontsize = 11)
|
|
|
262 |
with gr.Blocks(theme="Taithrah/Minimal") as demo:
|
263 |
gr.Markdown(
|
264 |
"""
|
265 |
+
# Channel Flow - Physics Constrained DNN for Predicting Mean Turbulent Flows
|
266 |
The App solves 2-D incompressible steady state NS equations for any given 2-D closed geometry. Geometry needs to be drawn around the center of the patch.\n
|
267 |
It predicts the streamlines,horizontal & vertical velocity profiles and the pressure profiles using a hybrid loss function.\n
|
268 |
+
Model Parameters (In SI Units) - Kinematic Viscosity = 0.0001, Input horizontal velocity = 0.075, Input vertical velocity = 0
|
269 |
""")
|
270 |
with gr.Row():
|
271 |
with gr.Column():
|