Spaces:
Running
Running
from diffusers import DiffusionPipeline | |
import gradio as gr | |
import numpy as np | |
import os | |
from huggingface_hub import login | |
login(token= os.get('black-forest-labs/FLUX.1')) | |
# Define a function that takes a text input and returns an image. | |
def text_to_image(text : str): | |
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev") | |
pipe.load_lora_weights("gokaygokay/Flux-Game-Assets-LoRA-v2") | |
prompt = text | |
image = pipe(prompt).images[0] | |
return image | |
# Create a Gradio interface that takes a textbox input, runs it through the text_to_image function, and returns output to an image. | |
demo = gr.Interface(fn=text_to_image, inputs="textbox", outputs="image") | |
# Launch the interface. | |
if __name__ == "__main__": | |
demo.launch(show_error=True) | |