Spaces:
Running
Running
from diffusers import DiffusionPipeline | |
import gradio as gr | |
import numpy as np | |
import os | |
from huggingface_hub import login | |
import os | |
# Retrieve the token from an environment variable | |
access_token = os.getenv('BLACK_FOREST_LABS_FLUX_1') # Replace with the correct variable name | |
if access_token is None: | |
raise ValueError("Token is not set in the environment variable.") | |
# Log in using the token | |
login(token=token) | |
# Define a function that takes a text input and returns an image. | |
def text_to_image(text : str): | |
# pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev") | |
# pipe.load_lora_weights("gokaygokay/Flux-Game-Assets-LoRA-v2") | |
pipe = gr.load("models/gokaygokay/Flux-Game-Assets-LoRA-v2").launch() | |
prompt = text | |
image = pipe(prompt).images[0] | |
return image | |
# Create a Gradio interface that takes a textbox input, runs it through the text_to_image function, and returns output to an image. | |
demo = gr.Interface(fn=text_to_image, inputs="textbox", outputs="image") | |
# Launch the interface. | |
if __name__ == "__main__": | |
demo.launch(show_error=True) | |