import base64 import tempfile import numpy as np import gradio as gr from gtts import gTTS import inference_script import vit_gpt2 import os import warnings warnings.filterwarnings('ignore') def process_image_and_generate_output(image, model_selection): if model_selection == ('Basic Model (Trained only for 15 epochs without any hyperparameter tuning, utilizing ' 'inception v3)'): result = inference_script.evaluate(image) pred_caption = ' '.join(result).rsplit(' ', 1)[0] pred_caption = pred_caption.replace('', '') elif model_selection == 'ViT-GPT2 (SOTA model for Image captioning)': result = vit_gpt2.predict_step(image) pred_caption = result[0] else: return "Invalid model selection", None # Generate speech from the caption tts = gTTS(text=pred_caption, lang='en', slow=False) with tempfile.NamedTemporaryFile(delete=False, suffix='.mp3') as temp_audio: audio_file_path = temp_audio.name tts.save(audio_file_path) # Read the audio file with open(audio_file_path, "rb") as f: audio_content = f.read() # Clean up the temporary audio file os.unlink(audio_file_path) return pred_caption, audio_content iface = gr.Interface(fn=process_image_and_generate_output, inputs=["image", gr.Radio(["Basic Model (Trained only for 15 epochs without any hyperparameter " "tuning, utilizing inception v3)", "ViT-GPT2 (SOTA model for Image " "captioning)"], label="Choose " "Model")], outputs=["text", "audio"], title="Eye For Blind | Image Captioning & TTS", description="Generate a caption for the uploaded image and convert it to speech.") iface.launch()