from transformers import VisionEncoderDecoderModel, ViTImageProcessor, AutoTokenizer from PIL import Image import warnings warnings.filterwarnings('ignore') model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning") feature_extractor = ViTImageProcessor.from_pretrained("nlpconnect/vit-gpt2-image-captioning") tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning") max_length = 16 num_beams = 4 gen_kwargs = {"max_length": max_length, "num_beams": num_beams} def predict_step(img_array): i_image = Image.fromarray(img_array) if i_image.mode != "RGB": i_image = i_image.convert(mode="RGB") pixel_values = feature_extractor(images=i_image, return_tensors="pt", do_normalize=True).pixel_values output_ids = model.generate(pixel_values, **gen_kwargs) pred = tokenizer.batch_decode(output_ids, skip_special_tokens=True) pred = [p.strip() for p in pred] return pred