Spaces:
Sleeping
Sleeping
import torch | |
import gradio as gr | |
from transformers import AutoTokenizer, ViTFeatureExtractor, VisionEncoderDecoderModel | |
device = 'cpu' | |
encoder_checkpoint = "nlpconnect/vit-gpt2-image-captioning" | |
decoder_checkpoint = "nlpconnect/vit-gpt2-image-captioning" | |
model_checkpoint = "nlpconnect/vit-gpt2-image-captioning" | |
feature_extractor = ViTFeatureExtractor.from_pretrained(encoder_checkpoint) | |
tokenizer = AutoTokenizer.from_pretrained(decoder_checkpoint) | |
model = VisionEncoderDecoderModel.from_pretrained(model_checkpoint).to(device) | |
def predict(image, max_length=64, num_beams=4): | |
image = image.convert('RGB') | |
image = feature_extractor(image, return_tensors="pt").pixel_values.to(device) | |
clean_text = lambda x: x.replace('', '').split('\n')[0] | |
caption_ids = model.generate(image, max_length=max_length, num_beams=num_beams)[0] | |
caption_text = clean_text(tokenizer.decode(caption_ids, skip_special_tokens=True)) | |
return caption_text | |
input_image = gr.inputs.Image(label="Upload your Image", type='pil', optional=True) | |
output_text = gr.outputs.Textbox(type="text", label="Captions") | |
examples = [f"example{i}.jpg" for i in range(1, 7)] | |
description = "Image captioning application made using transformers" | |
title = "Image Captioning 🖼️" | |
article = "Created By : Shreyas Dixit" | |
# Create the Gradio interface | |
interface = gr.Interface( | |
fn=predict, | |
inputs=input_image, | |
outputs=output_text, | |
examples=examples, | |
title=title, | |
description=description, | |
article=article, | |
theme="grass" | |
) | |
# Launch the interface | |
interface.launch(share=True) | |