Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,15 +1,14 @@
|
|
1 |
-
# Step 1: Install necessary libraries (Handled by Hugging Face via 'requirements.txt')
|
2 |
import streamlit as st
|
3 |
import spacy
|
4 |
-
from spacy.cli import download
|
5 |
import numpy as np
|
6 |
from numpy.linalg import norm
|
7 |
|
8 |
-
#
|
9 |
try:
|
10 |
nlp = spacy.load("en_core_web_md")
|
11 |
except OSError:
|
12 |
-
st.warning("Downloading spaCy model
|
13 |
download("en_core_web_md")
|
14 |
nlp = spacy.load("en_core_web_md")
|
15 |
|
@@ -57,47 +56,80 @@ faqs = {
|
|
57 |
]
|
58 |
}
|
59 |
|
60 |
-
#
|
61 |
faq_docs = []
|
62 |
for category, faq_list in faqs.items():
|
63 |
for faq in faq_list:
|
64 |
question = faq['question']
|
65 |
answer = faq['answer']
|
66 |
-
faq_vector = nlp(question).vector
|
67 |
faq_docs.append((question, answer, faq_vector))
|
68 |
|
69 |
-
|
70 |
-
|
71 |
-
"""Find the top 3 most relevant FAQs based on semantic similarity."""
|
72 |
query_vector = nlp(query).vector
|
73 |
-
|
74 |
-
# Calculate cosine similarity between query and each FAQ
|
75 |
similarities = [
|
76 |
(question, answer, np.dot(query_vector, faq_vector) / (norm(query_vector) * norm(faq_vector)))
|
77 |
for question, answer, faq_vector in faq_docs
|
78 |
]
|
79 |
-
|
80 |
-
# Sort by similarity score (highest first)
|
81 |
similarities = sorted(similarities, key=lambda x: x[2], reverse=True)
|
|
|
82 |
|
83 |
-
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
-
#
|
86 |
-
st.
|
87 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
|
89 |
-
#
|
90 |
-
|
|
|
|
|
|
|
|
|
91 |
|
|
|
|
|
|
|
|
|
92 |
if query:
|
93 |
-
|
94 |
-
|
|
|
95 |
|
96 |
-
# Display the results
|
97 |
-
st.markdown("### Top Relevant FAQs:")
|
98 |
for i, (question, answer, score) in enumerate(top_faqs, 1):
|
99 |
-
st.
|
100 |
-
|
101 |
-
|
102 |
else:
|
103 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
import spacy
|
3 |
+
from spacy.cli import download
|
4 |
import numpy as np
|
5 |
from numpy.linalg import norm
|
6 |
|
7 |
+
# Download spaCy model if not already installed
|
8 |
try:
|
9 |
nlp = spacy.load("en_core_web_md")
|
10 |
except OSError:
|
11 |
+
st.warning("Downloading the spaCy model. Please wait...")
|
12 |
download("en_core_web_md")
|
13 |
nlp = spacy.load("en_core_web_md")
|
14 |
|
|
|
56 |
]
|
57 |
}
|
58 |
|
59 |
+
# Precompute vectors for FAQ questions
|
60 |
faq_docs = []
|
61 |
for category, faq_list in faqs.items():
|
62 |
for faq in faq_list:
|
63 |
question = faq['question']
|
64 |
answer = faq['answer']
|
65 |
+
faq_vector = nlp(question).vector
|
66 |
faq_docs.append((question, answer, faq_vector))
|
67 |
|
68 |
+
def find_most_relevant_faq(query, faq_docs):
|
69 |
+
"""Find the most relevant FAQs based on cosine similarity."""
|
|
|
70 |
query_vector = nlp(query).vector
|
|
|
|
|
71 |
similarities = [
|
72 |
(question, answer, np.dot(query_vector, faq_vector) / (norm(query_vector) * norm(faq_vector)))
|
73 |
for question, answer, faq_vector in faq_docs
|
74 |
]
|
|
|
|
|
75 |
similarities = sorted(similarities, key=lambda x: x[2], reverse=True)
|
76 |
+
return similarities[:3]
|
77 |
|
78 |
+
# Enhanced Streamlit UI
|
79 |
+
st.set_page_config(
|
80 |
+
page_title="Smart FAQ Search - SARAS AI Institute",
|
81 |
+
page_icon="π",
|
82 |
+
layout="wide"
|
83 |
+
)
|
84 |
|
85 |
+
# Sidebar for Navigation
|
86 |
+
with st.sidebar:
|
87 |
+
st.image("https://via.placeholder.com/150", caption="Saras AI Institute")
|
88 |
+
st.title("FAQ Search")
|
89 |
+
st.markdown("### Navigate:")
|
90 |
+
st.markdown("1. **Ask a Question**")
|
91 |
+
st.markdown("2. **Explore FAQs by Category**")
|
92 |
+
st.markdown("---")
|
93 |
+
st.write("π§ Contact us: [email protected]")
|
94 |
|
95 |
+
# Main Header Section
|
96 |
+
st.title("π Smart FAQ Search")
|
97 |
+
st.markdown(
|
98 |
+
"<h4 style='color: #4CAF50;'>Find answers to your questions instantly!</h4>",
|
99 |
+
unsafe_allow_html=True
|
100 |
+
)
|
101 |
|
102 |
+
# Input section with a placeholder
|
103 |
+
query = st.text_input("π Ask a question:", placeholder="E.g., What is the admission process?")
|
104 |
+
|
105 |
+
# Display FAQs based on user query
|
106 |
if query:
|
107 |
+
st.markdown("---")
|
108 |
+
st.markdown("### π Top Relevant FAQs:")
|
109 |
+
top_faqs = find_most_relevant_faq(query, faq_docs)
|
110 |
|
|
|
|
|
111 |
for i, (question, answer, score) in enumerate(top_faqs, 1):
|
112 |
+
with st.expander(f"**{i}. {question}**"):
|
113 |
+
st.write(answer)
|
114 |
+
st.caption(f"Similarity Score: {score:.2f}")
|
115 |
else:
|
116 |
+
st.info("Enter a question above to find the most relevant FAQs.")
|
117 |
+
|
118 |
+
# Add an Explore Section with FAQ Categories
|
119 |
+
st.markdown("---")
|
120 |
+
st.markdown("### π Explore FAQs by Category")
|
121 |
+
|
122 |
+
for category, faq_list in faqs.items():
|
123 |
+
with st.expander(f"**{category}**"):
|
124 |
+
for faq in faq_list:
|
125 |
+
st.write(f"**Q:** {faq['question']}")
|
126 |
+
st.write(f"**A:** {faq['answer']}")
|
127 |
+
|
128 |
+
# Footer Section
|
129 |
+
st.markdown("---")
|
130 |
+
st.markdown(
|
131 |
+
"<div style='text-align: center;'>"
|
132 |
+
"π¬ Need more help? Contact us at <a href='mailto:[email protected]'>[email protected]</a>."
|
133 |
+
"</div>",
|
134 |
+
unsafe_allow_html=True
|
135 |
+
)
|