Spaces:
Build error
Build error
File size: 35,887 Bytes
f8c5b0d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 |
#include "common.h"
#include "llama.h"
#include "build-info.h"
// single thread
#define CPPHTTPLIB_THREAD_POOL_COUNT 1
#ifndef NDEBUG
// crash the server in debug mode, otherwise send an http 500 error
#define CPPHTTPLIB_NO_EXCEPTIONS 1
#endif
#include "httplib.h"
#include "json.hpp"
#ifndef SERVER_VERBOSE
#define SERVER_VERBOSE 1
#endif
using namespace httplib;
using json = nlohmann::json;
struct server_params {
std::string hostname = "127.0.0.1";
int32_t port = 8080;
int32_t read_timeout = 600;
int32_t write_timeout = 600;
};
static size_t common_part(const std::vector<llama_token> & a, const std::vector<llama_token> & b) {
size_t i;
for (i = 0; i < a.size() && i < b.size() && a[i] == b[i]; i++) {}
return i;
}
enum stop_type {
STOP_FULL,
STOP_PARTIAL,
};
static bool ends_with(const std::string & str, const std::string & suffix) {
return str.size() >= suffix.size() &&
0 == str.compare(str.size() - suffix.size(), suffix.size(), suffix);
}
static size_t find_partial_stop_string(const std::string & stop,
const std::string & text) {
if (!text.empty() && !stop.empty()) {
const char text_last_char = text.back();
for (int64_t char_index = stop.size() - 1; char_index >= 0; char_index--) {
if (stop[char_index] == text_last_char) {
const std::string current_partial = stop.substr(0, char_index + 1);
if (ends_with(text, current_partial)) {
return text.size() - char_index - 1;
}
}
}
}
return std::string::npos;
}
template<class Iter>
static std::string tokens_to_str(llama_context * ctx, Iter begin, Iter end) {
std::string ret;
for (; begin != end; ++begin) {
ret += llama_token_to_str(ctx, *begin);
}
return ret;
}
static void server_log(const char * level, const char * function, int line,
const char * message, const nlohmann::ordered_json & extra) {
nlohmann::ordered_json log {
{ "timestamp", time(nullptr) },
{ "level", level },
{ "function", function },
{ "line", line },
{ "message", message },
};
if (!extra.empty()) {
log.merge_patch(extra);
}
const std::string str = log.dump(-1, ' ', false, json::error_handler_t::replace);
fprintf(stdout, "%.*s\n", (int)str.size(), str.data());
fflush(stdout);
}
static bool server_verbose = false;
#if SERVER_VERBOSE != 1
# define LOG_VERBOSE(MSG, ...)
#else
# define LOG_VERBOSE(MSG, ...) \
do { \
if (server_verbose) { \
server_log("VERBOSE", __func__, __LINE__, MSG, __VA_ARGS__); \
} \
} while(0)
#endif
#define LOG_ERROR(MSG, ...) server_log("ERROR", __func__, __LINE__, MSG, __VA_ARGS__)
#define LOG_WARNING(MSG, ...) server_log("WARNING", __func__, __LINE__, MSG, __VA_ARGS__)
#define LOG_INFO(MSG, ...) server_log("INFO", __func__, __LINE__, MSG, __VA_ARGS__)
struct llama_server_context {
bool stream = false;
bool has_next_token = false;
std::string generated_text;
size_t num_tokens_predicted = 0;
size_t n_past = 0;
size_t n_remain = 0;
std::vector<llama_token> embd;
std::vector<llama_token> last_n_tokens;
llama_context * ctx = nullptr;
gpt_params params;
bool truncated = false;
bool stopped_eos = false;
bool stopped_word = false;
bool stopped_limit = false;
std::string stopping_word;
int32_t multibyte_pending = 0;
~llama_server_context() {
if (ctx) {
llama_free(ctx);
ctx = nullptr;
}
}
void rewind() {
params.antiprompt.clear();
num_tokens_predicted = 0;
generated_text = "";
generated_text.reserve(params.n_ctx);
truncated = false;
stopped_eos = false;
stopped_word = false;
stopped_limit = false;
stopping_word = "";
multibyte_pending = 0;
n_remain = 0;
n_past = 0;
}
bool loadModel(const gpt_params & params_) {
params = params_;
ctx = llama_init_from_gpt_params(params);
if (ctx == nullptr) {
LOG_ERROR("unable to load model", { { "model", params_.model } });
return false;
}
last_n_tokens.resize(params.n_ctx);
std::fill(last_n_tokens.begin(), last_n_tokens.end(), 0);
return true;
}
void loadPrompt() {
params.prompt.insert(0, 1, ' '); // always add a first space
std::vector<llama_token> prompt_tokens = ::llama_tokenize(ctx, params.prompt, true);
if (params.n_keep < 0) {
params.n_keep = (int)prompt_tokens.size();
}
params.n_keep = std::min(params.n_ctx - 4, params.n_keep);
// if input prompt is too big, truncate like normal
if (prompt_tokens.size() >= (size_t)params.n_ctx) {
const int n_left = (params.n_ctx - params.n_keep) / 2;
std::vector<llama_token> new_tokens(prompt_tokens.begin(), prompt_tokens.begin() + params.n_keep);
const int erased_blocks = (prompt_tokens.size() - params.n_keep - n_left - 1) / n_left;
new_tokens.insert(new_tokens.end(), prompt_tokens.begin() + params.n_keep + erased_blocks * n_left, prompt_tokens.end());
std::copy(prompt_tokens.end() - params.n_ctx, prompt_tokens.end(), last_n_tokens.begin());
LOG_VERBOSE("input truncated", {
{ "n_ctx", params.n_ctx },
{ "n_keep", params.n_keep },
{ "n_left", n_left },
{ "new_tokens", tokens_to_str(ctx, new_tokens.cbegin(), new_tokens.cend()) },
});
truncated = true;
prompt_tokens = new_tokens;
} else {
const size_t ps = prompt_tokens.size();
std::fill(last_n_tokens.begin(), last_n_tokens.end() - ps, 0);
std::copy(prompt_tokens.begin(), prompt_tokens.end(), last_n_tokens.end() - ps);
}
// compare the evaluated prompt with the new prompt
n_past = common_part(embd, prompt_tokens);
embd = prompt_tokens;
if (n_past == prompt_tokens.size()) {
// we have to evaluate at least 1 token to generate logits.
n_past--;
}
LOG_VERBOSE("prompt ingested", {
{ "n_past", n_past },
{ "cached", tokens_to_str(ctx, embd.cbegin(), embd.cbegin() + n_past) },
{ "to_eval", tokens_to_str(ctx, embd.cbegin() + n_past, embd.cend()) },
});
has_next_token = true;
}
void beginCompletion() {
// number of tokens to keep when resetting context
n_remain = params.n_predict;
llama_set_rng_seed(ctx, params.seed);
}
llama_token nextToken() {
llama_token result = -1;
if (embd.size() >= (size_t)params.n_ctx) {
// Reset context
const int n_left = (params.n_ctx - params.n_keep) / 2;
std::vector<llama_token> new_tokens(embd.begin(), embd.begin() + params.n_keep);
new_tokens.insert(new_tokens.end(), embd.end() - n_left, embd.end());
embd = new_tokens;
n_past = params.n_keep;
truncated = true;
LOG_VERBOSE("input truncated", {
{ "n_ctx", params.n_ctx },
{ "n_keep", params.n_keep },
{ "n_left", n_left },
{ "new_tokens", tokens_to_str(ctx, new_tokens.cbegin(), new_tokens.cend()) },
});
}
while (n_past < embd.size()) {
int n_eval = (int)embd.size() - n_past;
if (n_eval > params.n_batch) {
n_eval = params.n_batch;
}
if (llama_eval(ctx, &embd[n_past], n_eval, n_past, params.n_threads)) {
LOG_ERROR("failed to eval", {
{ "n_eval", n_eval },
{ "n_past", n_past },
{ "n_threads", params.n_threads },
{ "embd", tokens_to_str(ctx, embd.cbegin() + n_past, embd.cend()) },
});
has_next_token = false;
return result;
}
n_past += n_eval;
}
// out of user input, sample next token
const float temp = params.temp;
const int32_t top_k = params.top_k <= 0 ? llama_n_vocab(ctx) : params.top_k;
const float top_p = params.top_p;
const float tfs_z = params.tfs_z;
const float typical_p = params.typical_p;
const int32_t repeat_last_n = params.repeat_last_n < 0 ? params.n_ctx : params.repeat_last_n;
const float repeat_penalty = params.repeat_penalty;
const float alpha_presence = params.presence_penalty;
const float alpha_frequency = params.frequency_penalty;
const int mirostat = params.mirostat;
const float mirostat_tau = params.mirostat_tau;
const float mirostat_eta = params.mirostat_eta;
const bool penalize_nl = params.penalize_nl;
llama_token id = 0;
{
auto * logits = llama_get_logits(ctx);
auto n_vocab = llama_n_vocab(ctx);
// Apply params.logit_bias map
for (const auto & it : params.logit_bias) {
logits[it.first] += it.second;
}
std::vector<llama_token_data> candidates;
candidates.reserve(n_vocab);
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
candidates.emplace_back(llama_token_data{ token_id, logits[token_id], 0.0f });
}
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
// Apply penalties
float nl_logit = logits[llama_token_nl()];
auto last_n_repeat = std::min(std::min((int)last_n_tokens.size(), repeat_last_n), params.n_ctx);
llama_sample_repetition_penalty(ctx, &candidates_p,
last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
last_n_repeat, repeat_penalty);
llama_sample_frequency_and_presence_penalties(ctx, &candidates_p,
last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
last_n_repeat, alpha_frequency, alpha_presence);
if (!penalize_nl) {
logits[llama_token_nl()] = nl_logit;
}
if (temp <= 0) {
// Greedy sampling
id = llama_sample_token_greedy(ctx, &candidates_p);
} else {
if (mirostat == 1) {
static float mirostat_mu = 2.0f * mirostat_tau;
const int mirostat_m = 100;
llama_sample_temperature(ctx, &candidates_p, temp);
id = llama_sample_token_mirostat(ctx, &candidates_p, mirostat_tau, mirostat_eta, mirostat_m, &mirostat_mu);
} else if (mirostat == 2) {
static float mirostat_mu = 2.0f * mirostat_tau;
llama_sample_temperature(ctx, &candidates_p, temp);
id = llama_sample_token_mirostat_v2(ctx, &candidates_p, mirostat_tau, mirostat_eta, &mirostat_mu);
} else {
// Temperature sampling
llama_sample_tail_free(ctx, &candidates_p, tfs_z, 1);
llama_sample_typical(ctx, &candidates_p, typical_p, 1);
llama_sample_top_p(ctx, &candidates_p, top_p, 1);
llama_sample_top_k(ctx, &candidates_p, top_k, 1);
llama_sample_temperature(ctx, &candidates_p, temp);
id = llama_sample_token(ctx, &candidates_p);
}
}
last_n_tokens.erase(last_n_tokens.begin());
last_n_tokens.push_back(id);
num_tokens_predicted++;
}
// add it to the context
embd.push_back(id);
result = id;
// decrement remaining sampling budget
--n_remain;
if (!embd.empty() && embd.back() == llama_token_eos()) {
//stopping_word = llama_token_to_str(ctx, embd.back());
has_next_token = false;
stopped_eos = true;
LOG_VERBOSE("eos token found", {});
return result;
}
has_next_token = params.n_predict == -1 || n_remain != 0;
return result;
}
size_t findStoppingStrings(const std::string & text, const size_t last_token_size,
const stop_type type) {
size_t stop_pos = std::string::npos;
for (const std::string & word : params.antiprompt) {
size_t pos;
if (type == STOP_FULL) {
const size_t tmp = word.size() + last_token_size;
const size_t from_pos = text.size() > tmp ? text.size() - tmp : 0;
pos = text.find(word, from_pos);
}
else {
pos = find_partial_stop_string(word, text);
}
if (pos != std::string::npos &&
(stop_pos == std::string::npos || pos < stop_pos)) {
if (type == STOP_FULL) {
stopping_word = word;
stopped_word = true;
has_next_token = false;
}
stop_pos = pos;
}
}
return stop_pos;
}
std::string doCompletion() {
const llama_token token = nextToken();
const std::string token_text = token == -1 ? "" : llama_token_to_str(ctx, token);
generated_text += token_text;
if (multibyte_pending > 0) {
multibyte_pending -= token_text.size();
} else if (token_text.size() == 1) {
const char c = token_text[0];
// 2-byte characters: 110xxxxx 10xxxxxx
if ((c & 0xE0) == 0xC0) {
multibyte_pending = 1;
// 3-byte characters: 1110xxxx 10xxxxxx 10xxxxxx
} else if ((c & 0xF0) == 0xE0) {
multibyte_pending = 2;
// 4-byte characters: 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
} else if ((c & 0xF8) == 0xF0) {
multibyte_pending = 3;
} else {
multibyte_pending = 0;
}
}
if (multibyte_pending > 0 && !has_next_token) {
has_next_token = true;
n_remain++;
}
if (!has_next_token && n_remain == 0) {
stopped_limit = true;
}
LOG_VERBOSE("next token", {
{ "token", token },
{ "token_text", llama_token_to_str(ctx, token) },
{ "has_next_token", has_next_token },
{ "n_remain", n_remain },
{ "num_tokens_predicted", num_tokens_predicted },
{ "stopped_eos", stopped_eos },
{ "stopped_word", stopped_word },
{ "stopped_limit", stopped_limit },
{ "stopping_word", stopping_word },
});
return token_text;
}
};
static void server_print_usage(const char * argv0, const gpt_params & params,
const server_params & sparams) {
fprintf(stderr, "usage: %s [options]\n", argv0);
fprintf(stderr, "\n");
fprintf(stderr, "options:\n");
fprintf(stderr, " -h, --help show this help message and exit\n");
fprintf(stderr, " -v, --verbose verbose output (default: %s)\n", server_verbose ? "enabled" : "disabled");
fprintf(stderr, " -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads);
fprintf(stderr, " -c N, --ctx-size N size of the prompt context (default: %d)\n", params.n_ctx);
fprintf(stderr, " -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch);
fprintf(stderr, " --memory-f32 use f32 instead of f16 for memory key+value (default: disabled)\n");
fprintf(stderr, " not recommended: doubles context memory required and no measurable increase in quality\n");
if (llama_mlock_supported()) {
fprintf(stderr, " --mlock force system to keep model in RAM rather than swapping or compressing\n");
}
if (llama_mmap_supported()) {
fprintf(stderr, " --no-mmap do not memory-map model (slower load but may reduce pageouts if not using mlock)\n");
}
#ifdef LLAMA_SUPPORTS_GPU_OFFLOAD
fprintf(stderr, " -ngl N, --n-gpu-layers N\n");
fprintf(stderr, " number of layers to store in VRAM\n");
fprintf(stderr, " -ts SPLIT --tensor-split SPLIT\n");
fprintf(stderr, " how to split tensors across multiple GPUs, comma-separated list of proportions, e.g. 3,1\n");
fprintf(stderr, " how to split tensors across multiple GPUs, comma-separated list of proportions, e.g. 3,1\n");
fprintf(stderr, " -mg i, --main-gpu i the GPU to use for scratch and small tensors\n");
fprintf(stderr, " -lv, --low-vram don't allocate VRAM scratch buffer\n");
#endif
fprintf(stderr, " -m FNAME, --model FNAME\n");
fprintf(stderr, " model path (default: %s)\n", params.model.c_str());
fprintf(stderr, " -a ALIAS, --alias ALIAS\n");
fprintf(stderr, " set an alias for the model, will be added as `model` field in completion response\n");
fprintf(stderr, " --lora FNAME apply LoRA adapter (implies --no-mmap)\n");
fprintf(stderr, " --lora-base FNAME optional model to use as a base for the layers modified by the LoRA adapter\n");
fprintf(stderr, " --host ip address to listen (default (default: %s)\n", sparams.hostname.c_str());
fprintf(stderr, " --port PORT port to listen (default (default: %d)\n", sparams.port);
fprintf(stderr, " -to N, --timeout N server read/write timeout in seconds (default: %d)\n", sparams.read_timeout);
fprintf(stderr, "\n");
}
static void server_params_parse(int argc, char ** argv, server_params & sparams,
gpt_params & params) {
gpt_params default_params;
server_params default_sparams;
std::string arg;
bool invalid_param = false;
for (int i = 1; i < argc; i++) {
arg = argv[i];
if (arg == "--port") {
if (++i >= argc) {
invalid_param = true;
break;
}
sparams.port = std::stoi(argv[i]);
} else if (arg == "--host") {
if (++i >= argc) {
invalid_param = true;
break;
}
sparams.hostname = argv[i];
} else if (arg == "--timeout" || arg == "-to") {
if (++i >= argc) {
invalid_param = true;
break;
}
sparams.read_timeout = std::stoi(argv[i]);
sparams.write_timeout = std::stoi(argv[i]);
} else if (arg == "-m" || arg == "--model") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.model = argv[i];
} else if (arg == "-a" || arg == "--alias") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.model_alias = argv[i];
} else if (arg == "-h" || arg == "--help") {
server_print_usage(argv[0], default_params, default_sparams);
exit(0);
} else if (arg == "-c" || arg == "--ctx-size" || arg == "--ctx_size") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.n_ctx = std::stoi(argv[i]);
} else if (arg == "--memory-f32" || arg == "--memory_f32") {
params.memory_f16 = false;
} else if (arg == "--threads" || arg == "-t") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.n_threads = std::stoi(argv[i]);
} else if (arg == "-b" || arg == "--batch-size") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.n_batch = std::stoi(argv[i]);
params.n_batch = std::min(512, params.n_batch);
} else if (arg == "--gpu-layers" || arg == "-ngl" || arg == "--n-gpu-layers") {
if (++i >= argc) {
invalid_param = true;
break;
}
#ifdef LLAMA_SUPPORTS_GPU_OFFLOAD
params.n_gpu_layers = std::stoi(argv[i]);
#else
LOG_WARNING("Not compiled with GPU offload support, --n-gpu-layers option will be ignored. "
"See main README.md for information on enabling GPU BLAS support", { { "n_gpu_layers", params.n_gpu_layers } });
#endif
}
else if (arg == "--tensor-split" || arg == "-ts") {
if (++i >= argc) {
invalid_param = true;
break;
}
#ifdef GGML_USE_CUBLAS
std::string arg_next = argv[i];
// split string by , and /
const std::regex regex{ R"([,/]+)" };
std::sregex_token_iterator it{ arg_next.begin(), arg_next.end(), regex, -1 };
std::vector<std::string> split_arg{ it, {} };
GGML_ASSERT(split_arg.size() <= LLAMA_MAX_DEVICES);
for (size_t i_device = 0; i_device < LLAMA_MAX_DEVICES; ++i_device) {
if (i_device < split_arg.size()) {
params.tensor_split[i_device] = std::stof(split_arg[i_device]);
}
else {
params.tensor_split[i_device] = 0.0f;
}
}
#else
LOG_WARNING("llama.cpp was compiled without cuBLAS. It is not possible to set a tensor split.", {});
#endif // GGML_USE_CUBLAS
}
else if (arg == "--low-vram" || arg == "-lv")
{
#ifdef GGML_USE_CUBLAS
params.low_vram = true;
#else
fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. It is not possible to set lower vram usage.\n");
#endif // GGML_USE_CUBLAS
}
else if (arg == "--main-gpu" || arg == "-mg") {
if (++i >= argc) {
invalid_param = true;
break;
}
#ifdef GGML_USE_CUBLAS
params.main_gpu = std::stoi(argv[i]);
#else
LOG_WARNING("llama.cpp was compiled without cuBLAS. It is not possible to set a main GPU.", {});
#endif
} else if (arg == "--lora") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.lora_adapter = argv[i];
params.use_mmap = false;
} else if (arg == "--lora-base") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.lora_base = argv[i];
} else if (arg == "-v" || arg == "--verbose") {
#if SERVER_VERBOSE != 1
LOG_WARNING("server.cpp is not built with verbose logging.", {});
#else
server_verbose = true;
#endif
} else if (arg == "--mlock") {
params.use_mlock = true;
} else if (arg == "--no-mmap") {
params.use_mmap = false;
} else {
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
server_print_usage(argv[0], default_params, default_sparams);
exit(1);
}
}
if (invalid_param) {
fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
server_print_usage(argv[0], default_params, default_sparams);
exit(1);
}
}
static json format_generation_settings(llama_server_context & llama) {
const auto eos_bias = llama.params.logit_bias.find(llama_token_eos());
const bool ignore_eos = eos_bias != llama.params.logit_bias.end() &&
eos_bias->second < 0.0f && std::isinf(eos_bias->second);
return json {
{ "seed", llama.params.seed },
{ "temp", llama.params.temp },
{ "top_k", llama.params.top_k },
{ "top_p", llama.params.top_p },
{ "tfs_z", llama.params.tfs_z },
{ "typical_p", llama.params.typical_p },
{ "repeat_last_n", llama.params.repeat_last_n },
{ "repeat_penalty", llama.params.repeat_penalty },
{ "presence_penalty", llama.params.presence_penalty },
{ "frequency_penalty", llama.params.frequency_penalty },
{ "mirostat", llama.params.mirostat },
{ "mirostat_tau", llama.params.mirostat_tau },
{ "mirostat_eta", llama.params.mirostat_eta },
{ "penalize_nl", llama.params.penalize_nl },
{ "stop", llama.params.antiprompt },
{ "n_predict", llama.params.n_predict },
{ "n_keep", llama.params.n_keep },
{ "ignore_eos", ignore_eos },
{ "stream", llama.stream },
{ "logit_bias", llama.params.logit_bias },
};
}
static json format_final_response(llama_server_context & llama, const std::string & content) {
return json {
{ "content", content },
{ "stop", true },
{ "model", llama.params.model_alias },
{ "tokens_predicted", llama.num_tokens_predicted },
{ "generation_settings", format_generation_settings(llama) },
{ "prompt", llama.params.prompt },
{ "truncated", llama.truncated },
{ "stopped_eos", llama.stopped_eos },
{ "stopped_word", llama.stopped_word },
{ "stopped_limit", llama.stopped_limit },
{ "stopping_word", llama.stopping_word },
};
}
static json format_partial_response(const std::string & content) {
return json {
{ "content", content },
{ "stop", false },
};
}
static json format_tokenizer_response(const std::vector<llama_token> & tokens) {
return json {
{ "tokens", tokens }
};
}
static void parse_options_completion(const json & body, llama_server_context & llama) {
gpt_params default_params;
llama.stream = body.value("stream", false);
llama.params.n_predict = body.value("n_predict", default_params.n_predict);
llama.params.top_k = body.value("top_k", default_params.top_k);
llama.params.top_p = body.value("top_p", default_params.top_p);
llama.params.tfs_z = body.value("tfs_z", default_params.tfs_z);
llama.params.typical_p = body.value("typical_p", default_params.typical_p);
llama.params.repeat_last_n = body.value("repeat_last_n", default_params.repeat_last_n);
llama.params.temp = body.value("temperature", default_params.temp);
llama.params.repeat_penalty = body.value("repeat_penalty", default_params.repeat_penalty);
llama.params.presence_penalty = body.value("presence_penalty", default_params.presence_penalty);
llama.params.frequency_penalty = body.value("frequency_penalty", default_params.frequency_penalty);
llama.params.mirostat = body.value("mirostat", default_params.mirostat);
llama.params.mirostat_tau = body.value("mirostat_tau", default_params.mirostat_tau);
llama.params.mirostat_eta = body.value("mirostat_eta", default_params.mirostat_eta);
llama.params.penalize_nl = body.value("penalize_nl", default_params.penalize_nl);
llama.params.n_keep = body.value("n_keep", default_params.n_keep);
llama.params.seed = body.value("seed", default_params.seed);
llama.params.prompt = body.value("prompt", default_params.prompt);
llama.params.logit_bias.clear();
if (body.value("ignore_eos", false)) {
llama.params.logit_bias[llama_token_eos()] = -INFINITY;
}
const auto & logit_bias = body.find("logit_bias");
if (logit_bias != body.end() && logit_bias->is_array()) {
const int n_vocab = llama_n_vocab(llama.ctx);
for (const auto & el : *logit_bias) {
if (el.is_array() && el.size() == 2 && el[0].is_number_integer()) {
llama_token tok = el[0].get<llama_token>();
if (tok >= 0 && tok < n_vocab) {
if (el[1].is_number()) {
llama.params.logit_bias[tok] = el[1].get<float>();
} else if (el[1].is_boolean() && !el[1].get<bool>()) {
llama.params.logit_bias[tok] = -INFINITY;
}
}
}
}
}
llama.params.antiprompt.clear();
const auto & stop = body.find("stop");
if (stop != body.end() && stop->is_array()) {
for (const auto & word : *stop) {
if (!word.empty()) {
llama.params.antiprompt.push_back(word);
}
}
}
LOG_VERBOSE("completion parameters parsed", format_generation_settings(llama));
}
static void log_server_request(const Request & req, const Response & res) {
LOG_INFO("request", {
{ "remote_addr", req.remote_addr },
{ "remote_port", req.remote_port },
{ "status", res.status },
{ "path", req.path },
{ "request", req.body },
{ "response", res.body },
});
}
int main(int argc, char ** argv) {
// own arguments required by this example
gpt_params params;
server_params sparams;
// struct that contains llama context and inference
llama_server_context llama;
server_params_parse(argc, argv, sparams, params);
if (params.model_alias == "unknown") {
params.model_alias = params.model;
}
llama_init_backend();
LOG_INFO("build info", {
{ "build", BUILD_NUMBER },
{ "commit", BUILD_COMMIT }
});
LOG_INFO("system info", {
{ "n_threads", params.n_threads },
{ "total_threads", std::thread::hardware_concurrency() },
{ "system_info", llama_print_system_info() },
});
// load the model
if (!llama.loadModel(params)) {
return 1;
}
Server svr;
svr.set_default_headers({
{ "Access-Control-Allow-Origin", "*" },
{ "Access-Control-Allow-Headers", "content-type" }
});
svr.Get("/", [](const Request &, Response & res) {
res.set_content("<h1>llama.cpp server works</h1>", "text/html");
});
svr.Post("/completion", [&llama](const Request & req, Response & res) {
llama.rewind();
llama_reset_timings(llama.ctx);
parse_options_completion(json::parse(req.body), llama);
llama.loadPrompt();
llama.beginCompletion();
if (!llama.stream) {
size_t stop_pos = std::string::npos;
while (llama.has_next_token) {
const std::string token_text = llama.doCompletion();
stop_pos = llama.findStoppingStrings(llama.generated_text,
token_text.size(), STOP_FULL);
}
if (stop_pos == std::string::npos) {
stop_pos = llama.findStoppingStrings(llama.generated_text, 0, STOP_PARTIAL);
}
if (stop_pos != std::string::npos) {
llama.generated_text.erase(llama.generated_text.begin() + stop_pos,
llama.generated_text.end());
}
const json data = format_final_response(llama, llama.generated_text);
llama_print_timings(llama.ctx);
res.set_content(data.dump(-1, ' ', false, json::error_handler_t::replace),
"application/json");
} else {
const auto chunked_content_provider = [&](size_t, DataSink & sink) {
size_t sent_count = 0;
while (llama.has_next_token) {
const std::string token_text = llama.doCompletion();
if (llama.multibyte_pending > 0) {
continue;
}
size_t pos = std::min(sent_count, llama.generated_text.size());
const std::string str_test = llama.generated_text.substr(pos);
size_t stop_pos =
llama.findStoppingStrings(str_test, token_text.size(), STOP_FULL);
if (stop_pos != std::string::npos) {
llama.generated_text.erase(
llama.generated_text.begin() + pos + stop_pos,
llama.generated_text.end());
pos = std::min(sent_count, llama.generated_text.size());
} else {
stop_pos = llama.findStoppingStrings(str_test, token_text.size(),
STOP_PARTIAL);
}
const std::string to_send = llama.generated_text.substr(pos, stop_pos);
sent_count += to_send.size();
const json data = llama.has_next_token
? format_partial_response(to_send)
// Generation is done, send extra information.
: format_final_response(llama, to_send);
const std::string str =
"data: " +
data.dump(-1, ' ', false, json::error_handler_t::replace) +
"\n\n";
LOG_VERBOSE("data stream", {
{ "to_send", str }
});
if (!sink.write(str.data(), str.size())) {
LOG_VERBOSE("stream closed", {});
llama_print_timings(llama.ctx);
return false;
}
}
llama_print_timings(llama.ctx);
sink.done();
return true;
};
res.set_chunked_content_provider("text/event-stream", chunked_content_provider);
}
});
svr.Options(R"(/.*)", [](const Request &, Response & res) {
return res.set_content("", "application/json");
});
svr.Post("/tokenize", [&llama](const Request & req, Response & res) {
const json body = json::parse(req.body);
const std::string content = body["content"].get<std::string>();
const std::vector<llama_token> tokens = llama_tokenize(llama.ctx, content, false);
const json data = format_tokenizer_response(tokens);
return res.set_content(data.dump(), "application/json");
});
svr.set_logger(log_server_request);
svr.set_exception_handler([](const Request &, Response & res, std::exception_ptr ep) {
const auto * fmt = "500 Internal Server Error\n%s";
char buf[BUFSIZ];
try {
std::rethrow_exception(std::move(ep));
} catch (std::exception & e) {
snprintf(buf, sizeof(buf), fmt, e.what());
} catch (...) {
snprintf(buf, sizeof(buf), fmt, "Unknown Exception");
}
res.set_content(buf, "text/plain");
res.status = 500;
});
// set timeouts and change hostname and port
svr.set_read_timeout(sparams.read_timeout);
svr.set_write_timeout(sparams.write_timeout);
if (!svr.bind_to_port(sparams.hostname, sparams.port)) {
LOG_ERROR("couldn't bind to server socket", {
{ "hostname", sparams.hostname },
{ "port", sparams.port },
});
return 1;
}
LOG_INFO("HTTP server listening", {
{ "hostname", sparams.hostname },
{ "port", sparams.port },
});
if (!svr.listen_after_bind()) {
return 1;
}
return 0;
}
|