File size: 5,050 Bytes
2c2f868
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import os
import numpy as np
import librosa
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder, StandardScaler
from sklearn.ensemble import RandomForestClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC
from sklearn.neural_network import MLPClassifier
from sklearn.metrics import classification_report
import joblib


class SoundClassifier:
    def __init__(self, data_dir, model_type='rf', sr=22050, duration=20):
        self.data_dir = data_dir
        self.sr = sr
        self.duration = duration
        self.model = None
        self.le = LabelEncoder()
        self.scaler = StandardScaler()
        self.model_type = model_type

    def extract_features(self, file_path):
        # Load audio file
        y, _ = librosa.load(file_path, sr=self.sr, duration=self.duration)

        # Pad or truncate to fixed length
        if len(y) < self.sr * self.duration:
            y = np.pad(y, (0, self.sr * self.duration - len(y)))
        else:
            y = y[:self.sr * self.duration]

        # Extract features
        mfccs = librosa.feature.mfcc(y=y, sr=self.sr, n_mfcc=13)
        spectral_centroid = librosa.feature.spectral_centroid(y=y, sr=self.sr)
        spectral_rolloff = librosa.feature.spectral_rolloff(y=y, sr=self.sr)

        # Compute statistics
        features = np.concatenate([
            mfccs.mean(axis=1),
            mfccs.std(axis=1),
            spectral_centroid.mean(axis=1),
            spectral_rolloff.mean(axis=1)
        ])

        return features

    def prepare_data(self):
        X = []
        y = []

        # Iterate through each issue folder
        for issue in os.listdir(self.data_dir):
            issue_path = os.path.join(self.data_dir, issue)
            if os.path.isdir(issue_path):
                # Process each audio file in the folder
                for audio_file in os.listdir(issue_path):
                    if audio_file.endswith('.wav'):
                        file_path = os.path.join(issue_path, audio_file)
                        features = self.extract_features(file_path)
                        X.append(features)
                        y.append(issue)
        print(len(X))
        print(len(y))
        X = np.array(X)
        y = self.le.fit_transform(y)

        return X, y

    def train(self):
        # Prepare data
        X, y = self.prepare_data()

        # Split data
        X_train, X_test, y_train, y_test = train_test_split(
            X, y, test_size=0.2, random_state=42
        )

        # Scale features
        X_train_scaled = self.scaler.fit_transform(X_train)
        X_test_scaled = self.scaler.transform(X_test)

        # Train model based on model_type
        if self.model_type == 'rf':
            self.model = RandomForestClassifier(n_estimators=100, random_state=42)
        elif self.model_type == 'lr':
            self.model = LogisticRegression(random_state=42, max_iter=1000)
        elif self.model_type == 'svm':
            self.model = SVC(kernel='rbf', random_state=42)
        elif self.model_type == 'nn':
            self.model = MLPClassifier(hidden_layer_sizes=(100, 50), max_iter=1000, random_state=42)
        else:
            raise ValueError("Invalid model type. Choose 'rf', 'lr', 'svm', or 'nn'.")

        self.model.fit(X_train_scaled, y_train)

        # Evaluate
        y_pred = self.model.predict(X_test_scaled)
        print(f"\nModel Performance ({self.model_type}):")
        print(classification_report(y_test, y_pred,
                                    labels=np.unique(y),
                                    target_names=self.le.classes_[np.unique(y)]))

        return self.model

    def predict(self, audio_file):
        # Extract features from new audio
        features = self.extract_features(audio_file)

        # Scale features
        features_scaled = self.scaler.transform([features])

        # Make prediction
        prediction = self.model.predict(features_scaled)[0]

        # Return the issue name
        return self.le.inverse_transform([prediction])[0]

    def save_model(self, model_path='sound_classifier_model.joblib'):
        """Save the trained model, label encoder, and scaler"""
        if self.model is None:
            raise ValueError("Model hasn't been trained yet!")

        model_data = {
            'model': self.model,
            'label_encoder': self.le,
            'scaler': self.scaler,
            'model_type': self.model_type
        }
        joblib.dump(model_data, model_path)

    @classmethod
    def load_model(cls, model_path='sound_classifier_model.joblib'):
        """Load a trained model"""
        classifier = cls(data_dir=None)  # Create instance without data dir
        model_data = joblib.load(model_path)
        classifier.model = model_data['model']
        classifier.le = model_data['label_encoder']
        classifier.scaler = model_data['scaler']
        classifier.model_type = model_data['model_type']
        return classifier