File size: 7,369 Bytes
252e766
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import os
from typing import Tuple, List

import cv2
import numpy as np
import torch
import torch.nn.functional as F
from loguru import logger
from pydantic import BaseModel

from lama_cleaner.helper import load_jit_model


class Click(BaseModel):
    # [y, x]
    coords: Tuple[float, float]
    is_positive: bool
    indx: int

    @property
    def coords_and_indx(self):
        return (*self.coords, self.indx)

    def scale(self, x_ratio: float, y_ratio: float) -> 'Click':
        return Click(
            coords=(self.coords[0] * x_ratio, self.coords[1] * y_ratio),
            is_positive=self.is_positive,
            indx=self.indx
        )


class ResizeTrans:
    def __init__(self, size=480):
        super().__init__()
        self.crop_height = size
        self.crop_width = size

    def transform(self, image_nd, clicks_lists):
        assert image_nd.shape[0] == 1 and len(clicks_lists) == 1
        image_height, image_width = image_nd.shape[2:4]
        self.image_height = image_height
        self.image_width = image_width
        image_nd_r = F.interpolate(image_nd, (self.crop_height, self.crop_width), mode='bilinear', align_corners=True)

        y_ratio = self.crop_height / image_height
        x_ratio = self.crop_width / image_width

        clicks_lists_resized = []
        for clicks_list in clicks_lists:
            clicks_list_resized = [click.scale(y_ratio, x_ratio) for click in clicks_list]
            clicks_lists_resized.append(clicks_list_resized)

        return image_nd_r, clicks_lists_resized

    def inv_transform(self, prob_map):
        new_prob_map = F.interpolate(prob_map, (self.image_height, self.image_width), mode='bilinear',
                                     align_corners=True)

        return new_prob_map


class ISPredictor(object):
    def __init__(
        self,
        model,
        device,
        open_kernel_size: int,
        dilate_kernel_size: int,
        net_clicks_limit=None,
        zoom_in=None,
        infer_size=384,
    ):
        self.model = model
        self.open_kernel_size = open_kernel_size
        self.dilate_kernel_size = dilate_kernel_size
        self.net_clicks_limit = net_clicks_limit
        self.device = device
        self.zoom_in = zoom_in
        self.infer_size = infer_size

        # self.transforms = [zoom_in] if zoom_in is not None else []

    def __call__(self, input_image: torch.Tensor, clicks: List[Click], prev_mask):
        """

        Args:
            input_image: [1, 3, H, W]  [0~1]
            clicks: List[Click]
            prev_mask: [1, 1, H, W]

        Returns:

        """
        transforms = [ResizeTrans(self.infer_size)]
        input_image = torch.cat((input_image, prev_mask), dim=1)

        # image_nd resized to infer_size
        for t in transforms:
            image_nd, clicks_lists = t.transform(input_image, [clicks])

        # image_nd.shape = [1, 4, 256, 256]
        # points_nd.sha[e = [1, 2, 3]
        # clicks_lists[0][0] Click 类
        points_nd = self.get_points_nd(clicks_lists)
        pred_logits = self.model(image_nd, points_nd)
        pred = torch.sigmoid(pred_logits)
        pred = self.post_process(pred)

        prediction = F.interpolate(pred, mode='bilinear', align_corners=True,
                                   size=image_nd.size()[2:])

        for t in reversed(transforms):
            prediction = t.inv_transform(prediction)

        # if self.zoom_in is not None and self.zoom_in.check_possible_recalculation():
        #    return self.get_prediction(clicker)

        return prediction.cpu().numpy()[0, 0]

    def post_process(self, pred: torch.Tensor) -> torch.Tensor:
        pred_mask = pred.cpu().numpy()[0][0]
        # morph_open to remove small noise
        kernel_size = self.open_kernel_size
        kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (kernel_size, kernel_size))
        pred_mask = cv2.morphologyEx(pred_mask, cv2.MORPH_OPEN, kernel, iterations=1)

        # Why dilate: make region slightly larger to avoid missing some pixels, this generally works better
        dilate_kernel_size = self.dilate_kernel_size
        if dilate_kernel_size > 1:
            kernel = cv2.getStructuringElement(cv2.MORPH_DILATE, (dilate_kernel_size, dilate_kernel_size))
            pred_mask = cv2.dilate(pred_mask, kernel, 1)
        return torch.from_numpy(pred_mask).unsqueeze(0).unsqueeze(0)

    def get_points_nd(self, clicks_lists):
        total_clicks = []
        num_pos_clicks = [sum(x.is_positive for x in clicks_list) for clicks_list in clicks_lists]
        num_neg_clicks = [len(clicks_list) - num_pos for clicks_list, num_pos in zip(clicks_lists, num_pos_clicks)]
        num_max_points = max(num_pos_clicks + num_neg_clicks)
        if self.net_clicks_limit is not None:
            num_max_points = min(self.net_clicks_limit, num_max_points)
        num_max_points = max(1, num_max_points)

        for clicks_list in clicks_lists:
            clicks_list = clicks_list[:self.net_clicks_limit]
            pos_clicks = [click.coords_and_indx for click in clicks_list if click.is_positive]
            pos_clicks = pos_clicks + (num_max_points - len(pos_clicks)) * [(-1, -1, -1)]

            neg_clicks = [click.coords_and_indx for click in clicks_list if not click.is_positive]
            neg_clicks = neg_clicks + (num_max_points - len(neg_clicks)) * [(-1, -1, -1)]
            total_clicks.append(pos_clicks + neg_clicks)

        return torch.tensor(total_clicks, device=self.device)


INTERACTIVE_SEG_MODEL_URL = os.environ.get(
    "INTERACTIVE_SEG_MODEL_URL",
    "https://github.com/Sanster/models/releases/download/clickseg_pplnet/clickseg_pplnet.pt",
)


class InteractiveSeg:
    def __init__(self, infer_size=384, open_kernel_size=3, dilate_kernel_size=3):
        device = torch.device('cpu')
        model = load_jit_model(INTERACTIVE_SEG_MODEL_URL, device).eval()
        self.predictor = ISPredictor(model, device,
                                     infer_size=infer_size,
                                     open_kernel_size=open_kernel_size,
                                     dilate_kernel_size=dilate_kernel_size)

    def __call__(self, image, clicks, prev_mask=None):
        """

        Args:
            image: [H,W,C] RGB
            clicks:

        Returns:

        """
        image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
        image = torch.from_numpy((image / 255).transpose(2, 0, 1)).unsqueeze(0).float()
        if prev_mask is None:
            mask = torch.zeros_like(image[:, :1, :, :])
        else:
            logger.info('InteractiveSeg run with prev_mask')
            mask = torch.from_numpy(prev_mask / 255).unsqueeze(0).unsqueeze(0).float()

        pred_probs = self.predictor(image, clicks, mask)
        pred_mask = pred_probs > 0.5
        pred_mask = (pred_mask * 255).astype(np.uint8)

        # Find largest contour
        # pred_mask = only_keep_largest_contour(pred_mask)
        # To simplify frontend process, add mask brush color here
        fg = pred_mask == 255
        bg = pred_mask != 255
        pred_mask = cv2.cvtColor(pred_mask, cv2.COLOR_GRAY2BGRA)
        # frontend brush color "ffcc00bb"
        pred_mask[bg] = 0
        pred_mask[fg] = [255, 203, 0, int(255 * 0.73)]
        pred_mask = cv2.cvtColor(pred_mask, cv2.COLOR_BGRA2RGBA)
        return pred_mask