Spaces:
Runtime error
Runtime error
File size: 7,369 Bytes
252e766 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
import os
from typing import Tuple, List
import cv2
import numpy as np
import torch
import torch.nn.functional as F
from loguru import logger
from pydantic import BaseModel
from lama_cleaner.helper import load_jit_model
class Click(BaseModel):
# [y, x]
coords: Tuple[float, float]
is_positive: bool
indx: int
@property
def coords_and_indx(self):
return (*self.coords, self.indx)
def scale(self, x_ratio: float, y_ratio: float) -> 'Click':
return Click(
coords=(self.coords[0] * x_ratio, self.coords[1] * y_ratio),
is_positive=self.is_positive,
indx=self.indx
)
class ResizeTrans:
def __init__(self, size=480):
super().__init__()
self.crop_height = size
self.crop_width = size
def transform(self, image_nd, clicks_lists):
assert image_nd.shape[0] == 1 and len(clicks_lists) == 1
image_height, image_width = image_nd.shape[2:4]
self.image_height = image_height
self.image_width = image_width
image_nd_r = F.interpolate(image_nd, (self.crop_height, self.crop_width), mode='bilinear', align_corners=True)
y_ratio = self.crop_height / image_height
x_ratio = self.crop_width / image_width
clicks_lists_resized = []
for clicks_list in clicks_lists:
clicks_list_resized = [click.scale(y_ratio, x_ratio) for click in clicks_list]
clicks_lists_resized.append(clicks_list_resized)
return image_nd_r, clicks_lists_resized
def inv_transform(self, prob_map):
new_prob_map = F.interpolate(prob_map, (self.image_height, self.image_width), mode='bilinear',
align_corners=True)
return new_prob_map
class ISPredictor(object):
def __init__(
self,
model,
device,
open_kernel_size: int,
dilate_kernel_size: int,
net_clicks_limit=None,
zoom_in=None,
infer_size=384,
):
self.model = model
self.open_kernel_size = open_kernel_size
self.dilate_kernel_size = dilate_kernel_size
self.net_clicks_limit = net_clicks_limit
self.device = device
self.zoom_in = zoom_in
self.infer_size = infer_size
# self.transforms = [zoom_in] if zoom_in is not None else []
def __call__(self, input_image: torch.Tensor, clicks: List[Click], prev_mask):
"""
Args:
input_image: [1, 3, H, W] [0~1]
clicks: List[Click]
prev_mask: [1, 1, H, W]
Returns:
"""
transforms = [ResizeTrans(self.infer_size)]
input_image = torch.cat((input_image, prev_mask), dim=1)
# image_nd resized to infer_size
for t in transforms:
image_nd, clicks_lists = t.transform(input_image, [clicks])
# image_nd.shape = [1, 4, 256, 256]
# points_nd.sha[e = [1, 2, 3]
# clicks_lists[0][0] Click 类
points_nd = self.get_points_nd(clicks_lists)
pred_logits = self.model(image_nd, points_nd)
pred = torch.sigmoid(pred_logits)
pred = self.post_process(pred)
prediction = F.interpolate(pred, mode='bilinear', align_corners=True,
size=image_nd.size()[2:])
for t in reversed(transforms):
prediction = t.inv_transform(prediction)
# if self.zoom_in is not None and self.zoom_in.check_possible_recalculation():
# return self.get_prediction(clicker)
return prediction.cpu().numpy()[0, 0]
def post_process(self, pred: torch.Tensor) -> torch.Tensor:
pred_mask = pred.cpu().numpy()[0][0]
# morph_open to remove small noise
kernel_size = self.open_kernel_size
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (kernel_size, kernel_size))
pred_mask = cv2.morphologyEx(pred_mask, cv2.MORPH_OPEN, kernel, iterations=1)
# Why dilate: make region slightly larger to avoid missing some pixels, this generally works better
dilate_kernel_size = self.dilate_kernel_size
if dilate_kernel_size > 1:
kernel = cv2.getStructuringElement(cv2.MORPH_DILATE, (dilate_kernel_size, dilate_kernel_size))
pred_mask = cv2.dilate(pred_mask, kernel, 1)
return torch.from_numpy(pred_mask).unsqueeze(0).unsqueeze(0)
def get_points_nd(self, clicks_lists):
total_clicks = []
num_pos_clicks = [sum(x.is_positive for x in clicks_list) for clicks_list in clicks_lists]
num_neg_clicks = [len(clicks_list) - num_pos for clicks_list, num_pos in zip(clicks_lists, num_pos_clicks)]
num_max_points = max(num_pos_clicks + num_neg_clicks)
if self.net_clicks_limit is not None:
num_max_points = min(self.net_clicks_limit, num_max_points)
num_max_points = max(1, num_max_points)
for clicks_list in clicks_lists:
clicks_list = clicks_list[:self.net_clicks_limit]
pos_clicks = [click.coords_and_indx for click in clicks_list if click.is_positive]
pos_clicks = pos_clicks + (num_max_points - len(pos_clicks)) * [(-1, -1, -1)]
neg_clicks = [click.coords_and_indx for click in clicks_list if not click.is_positive]
neg_clicks = neg_clicks + (num_max_points - len(neg_clicks)) * [(-1, -1, -1)]
total_clicks.append(pos_clicks + neg_clicks)
return torch.tensor(total_clicks, device=self.device)
INTERACTIVE_SEG_MODEL_URL = os.environ.get(
"INTERACTIVE_SEG_MODEL_URL",
"https://github.com/Sanster/models/releases/download/clickseg_pplnet/clickseg_pplnet.pt",
)
class InteractiveSeg:
def __init__(self, infer_size=384, open_kernel_size=3, dilate_kernel_size=3):
device = torch.device('cpu')
model = load_jit_model(INTERACTIVE_SEG_MODEL_URL, device).eval()
self.predictor = ISPredictor(model, device,
infer_size=infer_size,
open_kernel_size=open_kernel_size,
dilate_kernel_size=dilate_kernel_size)
def __call__(self, image, clicks, prev_mask=None):
"""
Args:
image: [H,W,C] RGB
clicks:
Returns:
"""
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
image = torch.from_numpy((image / 255).transpose(2, 0, 1)).unsqueeze(0).float()
if prev_mask is None:
mask = torch.zeros_like(image[:, :1, :, :])
else:
logger.info('InteractiveSeg run with prev_mask')
mask = torch.from_numpy(prev_mask / 255).unsqueeze(0).unsqueeze(0).float()
pred_probs = self.predictor(image, clicks, mask)
pred_mask = pred_probs > 0.5
pred_mask = (pred_mask * 255).astype(np.uint8)
# Find largest contour
# pred_mask = only_keep_largest_contour(pred_mask)
# To simplify frontend process, add mask brush color here
fg = pred_mask == 255
bg = pred_mask != 255
pred_mask = cv2.cvtColor(pred_mask, cv2.COLOR_GRAY2BGRA)
# frontend brush color "ffcc00bb"
pred_mask[bg] = 0
pred_mask[fg] = [255, 203, 0, int(255 * 0.73)]
pred_mask = cv2.cvtColor(pred_mask, cv2.COLOR_BGRA2RGBA)
return pred_mask
|