File size: 4,478 Bytes
252e766
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import os
import random
import time

import cv2
import numpy as np
import torch
from loguru import logger

from lama_cleaner.helper import get_cache_path_by_url, load_jit_model
from lama_cleaner.model.base import InpaintModel
from lama_cleaner.schema import Config

# def norm(np_img):
#     return np_img / 255 * 2 - 1.0
#
#
# @torch.no_grad()
# def run():
#     name = 'manga_1080x740.jpg'
#     img_p = f'/Users/qing/code/github/MangaInpainting/examples/test/imgs/{name}'
#     mask_p = f'/Users/qing/code/github/MangaInpainting/examples/test/masks/mask_{name}'
#     erika_model = torch.jit.load('erika.jit')
#     manga_inpaintor_model = torch.jit.load('manga_inpaintor.jit')
#
#     img = cv2.imread(img_p)
#     gray_img = cv2.imread(img_p, cv2.IMREAD_GRAYSCALE)
#     mask = cv2.imread(mask_p, cv2.IMREAD_GRAYSCALE)
#
#     kernel = np.ones((9, 9), dtype=np.uint8)
#     mask = cv2.dilate(mask, kernel, 2)
#     # cv2.imwrite("mask.jpg", mask)
#     # cv2.imshow('dilated_mask', cv2.hconcat([mask, dilated_mask]))
#     # cv2.waitKey(0)
#     # exit()
#
#     # img = pad(img)
#     gray_img = pad(gray_img).astype(np.float32)
#     mask = pad(mask)
#
#     # pad_mod = 16
#     import time
#     start = time.time()
#     y = erika_model(torch.from_numpy(gray_img[np.newaxis, np.newaxis, :, :]))
#     y = torch.clamp(y, 0, 255)
#     lines = y.cpu().numpy()
#     print(f"erika_model time: {time.time() - start}")
#
#     cv2.imwrite('lines.png', lines[0][0])
#
#     start = time.time()
#     masks = torch.from_numpy(mask[np.newaxis, np.newaxis, :, :])
#     masks = torch.where(masks > 0.5, torch.tensor(1.0), torch.tensor(0.0))
#     noise = torch.randn_like(masks)
#
#     images = torch.from_numpy(norm(gray_img)[np.newaxis, np.newaxis, :, :])
#     lines = torch.from_numpy(norm(lines))
#
#     outputs = manga_inpaintor_model(images, lines, masks, noise)
#     print(f"manga_inpaintor_model time: {time.time() - start}")
#
#     outputs_merged = (outputs * masks) + (images * (1 - masks))
#     outputs_merged = outputs_merged * 127.5 + 127.5
#     outputs_merged = outputs_merged.permute(0, 2, 3, 1)[0].detach().cpu().numpy().astype(np.uint8)
#     cv2.imwrite(f'output_{name}', outputs_merged)


MANGA_INPAINTOR_MODEL_URL = os.environ.get(
    "MANGA_INPAINTOR_MODEL_URL",
    "https://github.com/Sanster/models/releases/download/manga/manga_inpaintor.jit"
)
MANGA_LINE_MODEL_URL = os.environ.get(
    "MANGA_LINE_MODEL_URL",
    "https://github.com/Sanster/models/releases/download/manga/erika.jit"
)


class Manga(InpaintModel):
    pad_mod = 16

    def init_model(self, device, **kwargs):
        self.inpaintor_model = load_jit_model(MANGA_INPAINTOR_MODEL_URL, device)
        self.line_model = load_jit_model(MANGA_LINE_MODEL_URL, device)
        self.seed = 42

    @staticmethod
    def is_downloaded() -> bool:
        model_paths = [
            get_cache_path_by_url(MANGA_INPAINTOR_MODEL_URL),
            get_cache_path_by_url(MANGA_LINE_MODEL_URL),
        ]
        return all([os.path.exists(it) for it in model_paths])

    def forward(self, image, mask, config: Config):
        """
        image: [H, W, C] RGB
        mask: [H, W, 1]
        return: BGR IMAGE
        """
        seed = self.seed
        random.seed(seed)
        np.random.seed(seed)
        torch.manual_seed(seed)
        torch.cuda.manual_seed_all(seed)

        gray_img = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
        gray_img = torch.from_numpy(gray_img[np.newaxis, np.newaxis, :, :].astype(np.float32)).to(self.device)
        start = time.time()
        lines = self.line_model(gray_img)
        torch.cuda.empty_cache()
        lines = torch.clamp(lines, 0, 255)
        logger.info(f"erika_model time: {time.time() - start}")

        mask = torch.from_numpy(mask[np.newaxis, :, :, :]).to(self.device)
        mask = mask.permute(0, 3, 1, 2)
        mask = torch.where(mask > 0.5, 1.0, 0.0)
        noise = torch.randn_like(mask)
        ones = torch.ones_like(mask)

        gray_img = gray_img / 255 * 2 - 1.0
        lines = lines / 255 * 2 - 1.0

        start = time.time()
        inpainted_image = self.inpaintor_model(gray_img, lines, mask, noise, ones)
        logger.info(f"image_inpaintor_model time: {time.time() - start}")

        cur_res = inpainted_image[0].permute(1, 2, 0).detach().cpu().numpy()
        cur_res = (cur_res * 127.5 + 127.5).astype(np.uint8)
        cur_res = cv2.cvtColor(cur_res, cv2.COLOR_GRAY2BGR)
        return cur_res