Spaces:
Runtime error
Runtime error
File size: 13,279 Bytes
252e766 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 |
#!/usr/bin/env python3
import imghdr
import io
import json
import logging
import multiprocessing
import os
import random
import time
from pathlib import Path
from typing import Union
import cv2
import numpy as np
import torch
from PIL import Image
from loguru import logger
from watchdog.events import FileSystemEventHandler
from lama_cleaner.file_manager import FileManager
from lama_cleaner.interactive_seg import InteractiveSeg, Click
from lama_cleaner.model_manager import ModelManager
from lama_cleaner.schema import Config
try:
torch._C._jit_override_can_fuse_on_cpu(False)
torch._C._jit_override_can_fuse_on_gpu(False)
torch._C._jit_set_texpr_fuser_enabled(False)
torch._C._jit_set_nvfuser_enabled(False)
except:
pass
from flask import Flask, request, send_file, cli, make_response, send_from_directory, jsonify
# Disable ability for Flask to display warning about using a development server in a production environment.
# https://gist.github.com/jerblack/735b9953ba1ab6234abb43174210d356
cli.show_server_banner = lambda *_: None
from flask_cors import CORS
from lama_cleaner.helper import (
load_img,
numpy_to_bytes,
resize_max_size,
)
NUM_THREADS = str(multiprocessing.cpu_count())
# fix libomp problem on windows https://github.com/Sanster/lama-cleaner/issues/56
os.environ["KMP_DUPLICATE_LIB_OK"] = "True"
os.environ["OMP_NUM_THREADS"] = NUM_THREADS
os.environ["OPENBLAS_NUM_THREADS"] = NUM_THREADS
os.environ["MKL_NUM_THREADS"] = NUM_THREADS
os.environ["VECLIB_MAXIMUM_THREADS"] = NUM_THREADS
os.environ["NUMEXPR_NUM_THREADS"] = NUM_THREADS
if os.environ.get("CACHE_DIR"):
os.environ["TORCH_HOME"] = os.environ["CACHE_DIR"]
BUILD_DIR = os.environ.get("LAMA_CLEANER_BUILD_DIR", "app/build")
class NoFlaskwebgui(logging.Filter):
def filter(self, record):
return "flaskwebgui-keep-server-alive" not in record.getMessage()
logging.getLogger("werkzeug").addFilter(NoFlaskwebgui())
app = Flask(__name__, static_folder=os.path.join(BUILD_DIR, "static"))
app.config["JSON_AS_ASCII"] = False
CORS(app, expose_headers=["Content-Disposition"])
model: ModelManager = None
thumb: FileManager = None
interactive_seg_model: InteractiveSeg = None
device = None
input_image_path: str = None
is_disable_model_switch: bool = False
is_enable_file_manager: bool = False
is_desktop: bool = False
def get_image_ext(img_bytes):
w = imghdr.what("", img_bytes)
if w is None:
w = "jpeg"
return w
def diffuser_callback(i, t, latents):
pass
# socketio.emit('diffusion_step', {'diffusion_step': step})
@app.route("/save_image", methods=["POST"])
def save_image():
# all image in output directory
input = request.files
origin_image_bytes = input["image"].read() # RGB
image, _ = load_img(origin_image_bytes)
thumb.save_to_output_directory(image, request.form["filename"])
return 'ok', 200
@app.route("/medias/<tab>")
def medias(tab):
if tab == 'image':
response = make_response(jsonify(thumb.media_names), 200)
else:
response = make_response(jsonify(thumb.output_media_names), 200)
# response.last_modified = thumb.modified_time[tab]
# response.cache_control.no_cache = True
# response.cache_control.max_age = 0
# response.make_conditional(request)
return response
@app.route('/media/<tab>/<filename>')
def media_file(tab, filename):
if tab == 'image':
return send_from_directory(thumb.root_directory, filename)
return send_from_directory(thumb.output_dir, filename)
@app.route('/media_thumbnail/<tab>/<filename>')
def media_thumbnail_file(tab, filename):
args = request.args
width = args.get('width')
height = args.get('height')
if width is None and height is None:
width = 256
if width:
width = int(float(width))
if height:
height = int(float(height))
directory = thumb.root_directory
if tab == 'output':
directory = thumb.output_dir
thumb_filename, (width, height) = thumb.get_thumbnail(directory, filename, width, height)
thumb_filepath = f"{app.config['THUMBNAIL_MEDIA_THUMBNAIL_ROOT']}{thumb_filename}"
response = make_response(send_file(thumb_filepath))
response.headers["X-Width"] = str(width)
response.headers["X-Height"] = str(height)
return response
@app.route("/inpaint", methods=["POST"])
def process():
print("-------------")
print(request)
logger.info(f"Resized Resized Resized: { request.form}")
input = request.files
# RGB
origin_image_bytes = input["image"].read()
image, alpha_channel = load_img(origin_image_bytes)
mask, _ = load_img(input["mask"].read(), gray=True)
mask = cv2.threshold(mask, 127, 255, cv2.THRESH_BINARY)[1]
if image.shape[:2] != mask.shape[:2]:
return f"Mask shape{mask.shape[:2]} not queal to Image shape{image.shape[:2]}", 400
original_shape = image.shape
interpolation = cv2.INTER_CUBIC
form = request.form
size_limit: Union[int, str] = form.get("sizeLimit", "1080")
logger.info(size_limit)
if size_limit == "Original":
size_limit = max(image.shape)
else:
size_limit = int(size_limit)
if "paintByExampleImage" in input:
paint_by_example_example_image, _ = load_img(input["paintByExampleImage"].read())
paint_by_example_example_image = Image.fromarray(paint_by_example_example_image)
else:
paint_by_example_example_image = None
config = Config(
ldm_steps=form["ldmSteps"],
ldm_sampler=form["ldmSampler"],
hd_strategy=form["hdStrategy"],
zits_wireframe=form["zitsWireframe"],
hd_strategy_crop_margin=form["hdStrategyCropMargin"],
hd_strategy_crop_trigger_size=form["hdStrategyCropTrigerSize"],
hd_strategy_resize_limit=form["hdStrategyResizeLimit"],
prompt=form["prompt"],
negative_prompt=form["negativePrompt"],
use_croper=form["useCroper"],
croper_x=form["croperX"],
croper_y=form["croperY"],
croper_height=form["croperHeight"],
croper_width=form["croperWidth"],
sd_scale=form["sdScale"],
sd_mask_blur=form["sdMaskBlur"],
sd_strength=form["sdStrength"],
sd_steps=form["sdSteps"],
sd_guidance_scale=form["sdGuidanceScale"],
sd_sampler=form["sdSampler"],
sd_seed=form["sdSeed"],
sd_match_histograms=form["sdMatchHistograms"],
cv2_flag=form["cv2Flag"],
cv2_radius=form['cv2Radius'],
paint_by_example_steps=form["paintByExampleSteps"],
paint_by_example_guidance_scale=form["paintByExampleGuidanceScale"],
paint_by_example_mask_blur=form["paintByExampleMaskBlur"],
paint_by_example_seed=form["paintByExampleSeed"],
paint_by_example_match_histograms=form["paintByExampleMatchHistograms"],
paint_by_example_example_image=paint_by_example_example_image,
)
print(form["hdStrategy"])
if config.sd_seed == -1:
config.sd_seed = random.randint(1, 999999999)
if config.paint_by_example_seed == -1:
config.paint_by_example_seed = random.randint(1, 999999999)
logger.info(f"Origin image shape: {original_shape}")
image = resize_max_size(image, size_limit=size_limit, interpolation=interpolation)
logger.info(f"Resized image shape: {image.shape}")
mask = resize_max_size(mask, size_limit=size_limit, interpolation=interpolation)
start = time.time()
try:
res_np_img = model(image, mask, config)
except RuntimeError as e:
torch.cuda.empty_cache()
if "CUDA out of memory. " in str(e):
# NOTE: the string may change?
return "CUDA out of memory", 500
else:
logger.exception(e)
return "Internal Server Error", 500
finally:
logger.info(f"process time: {(time.time() - start) * 1000}ms")
torch.cuda.empty_cache()
if alpha_channel is not None:
if alpha_channel.shape[:2] != res_np_img.shape[:2]:
alpha_channel = cv2.resize(
alpha_channel, dsize=(res_np_img.shape[1], res_np_img.shape[0])
)
res_np_img = np.concatenate(
(res_np_img, alpha_channel[:, :, np.newaxis]), axis=-1
)
ext = get_image_ext(origin_image_bytes)
response = make_response(
send_file(
io.BytesIO(numpy_to_bytes(res_np_img, ext)),
mimetype=f"image/{ext}",
)
)
response.headers["X-Seed"] = str(config.sd_seed)
return response
@app.route("/interactive_seg", methods=["POST"])
def interactive_seg():
input = request.files
origin_image_bytes = input["image"].read() # RGB
image, _ = load_img(origin_image_bytes)
if 'mask' in input:
mask, _ = load_img(input["mask"].read(), gray=True)
else:
mask = None
_clicks = json.loads(request.form["clicks"])
clicks = []
for i, click in enumerate(_clicks):
clicks.append(Click(coords=(click[1], click[0]), indx=i, is_positive=click[2] == 1))
start = time.time()
new_mask = interactive_seg_model(image, clicks=clicks, prev_mask=mask)
logger.info(f"interactive seg process time: {(time.time() - start) * 1000}ms")
response = make_response(
send_file(
io.BytesIO(numpy_to_bytes(new_mask, 'png')),
mimetype=f"image/png",
)
)
return response
@app.route("/model")
def current_model():
return model.name, 200
@app.route("/is_disable_model_switch")
def get_is_disable_model_switch():
res = 'true' if is_disable_model_switch else 'false'
return res, 200
@app.route("/is_enable_file_manager")
def get_is_enable_file_manager():
res = 'true' if is_enable_file_manager else 'false'
return res, 200
@app.route("/model_downloaded/<name>")
def model_downloaded(name):
return str(model.is_downloaded(name)), 200
@app.route("/is_desktop")
def get_is_desktop():
return str(is_desktop), 200
@app.route("/model", methods=["POST"])
def switch_model():
if is_disable_model_switch:
return "Switch model is disabled", 400
new_name = request.form.get("name")
if new_name == model.name:
return "Same model", 200
try:
model.switch(new_name)
except NotImplementedError:
return f"{new_name} not implemented", 403
return f"ok, switch to {new_name}", 200
@app.route("/")
def index():
return send_file(os.path.join(BUILD_DIR, "index.html"), cache_timeout=0)
@app.route("/inputimage")
def set_input_photo():
if input_image_path:
with open(input_image_path, "rb") as f:
image_in_bytes = f.read()
return send_file(
input_image_path,
as_attachment=True,
attachment_filename=Path(input_image_path).name,
mimetype=f"image/{get_image_ext(image_in_bytes)}",
)
else:
return "No Input Image"
class FSHandler(FileSystemEventHandler):
def on_modified(self, event):
print("File modified: %s" % event.src_path)
def main(args):
print("-----------------------------------")
print(args)
global model
global interactive_seg_model
global device
global input_image_path
global is_disable_model_switch
global is_enable_file_manager
global is_desktop
global thumb
device = torch.device(args.device)
is_disable_model_switch = args.disable_model_switch
is_desktop = args.gui
if is_disable_model_switch:
logger.info(f"Start with --disable-model-switch, model switch on frontend is disable")
if args.input and os.path.isdir(args.input):
logger.info(f"Initialize file manager")
thumb = FileManager(app)
is_enable_file_manager = True
app.config["THUMBNAIL_MEDIA_ROOT"] = args.input
app.config["THUMBNAIL_MEDIA_THUMBNAIL_ROOT"] = os.path.join(args.output_dir, 'lama_cleaner_thumbnails')
thumb.output_dir = Path(args.output_dir)
# thumb.start()
# try:
# while True:
# time.sleep(1)
# finally:
# thumb.image_dir_observer.stop()
# thumb.image_dir_observer.join()
# thumb.output_dir_observer.stop()
# thumb.output_dir_observer.join()
else:
input_image_path = args.input
model = ModelManager(
name=args.model,
device=device,
no_half=args.no_half,
hf_access_token=args.hf_access_token,
disable_nsfw=args.sd_disable_nsfw or args.disable_nsfw,
sd_cpu_textencoder=args.sd_cpu_textencoder,
sd_run_local=args.sd_run_local,
local_files_only=args.local_files_only,
cpu_offload=args.cpu_offload,
enable_xformers=args.sd_enable_xformers or args.enable_xformers,
callback=diffuser_callback,
)
interactive_seg_model = InteractiveSeg()
if args.gui:
app_width, app_height = args.gui_size
from flaskwebgui import FlaskUI
ui = FlaskUI(
app, width=app_width, height=app_height, host=args.host, port=args.port,
close_server_on_exit=not args.no_gui_auto_close
)
ui.run()
else:
app.run(host=args.host, port=args.port, debug=args.debug)
|