File size: 5,793 Bytes
252e766
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
from pathlib import Path

import cv2
import pytest
import torch

from lama_cleaner.model_manager import ModelManager
from lama_cleaner.schema import Config, HDStrategy, LDMSampler

current_dir = Path(__file__).parent.absolute().resolve()
save_dir = current_dir / 'result'
save_dir.mkdir(exist_ok=True, parents=True)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
device = torch.device(device)


def get_data(fx: float = 1, fy: float = 1.0, img_p=current_dir / "image.png", mask_p=current_dir / "mask.png"):
    img = cv2.imread(str(img_p))
    img = cv2.cvtColor(img, cv2.COLOR_BGRA2RGB)
    mask = cv2.imread(str(mask_p), cv2.IMREAD_GRAYSCALE)
    img = cv2.resize(img, None, fx=fx, fy=fy, interpolation=cv2.INTER_AREA)
    mask = cv2.resize(mask, None, fx=fx, fy=fy, interpolation=cv2.INTER_NEAREST)
    return img, mask


def get_config(strategy, **kwargs):
    data = dict(
        ldm_steps=1,
        ldm_sampler=LDMSampler.plms,
        hd_strategy=strategy,
        hd_strategy_crop_margin=32,
        hd_strategy_crop_trigger_size=200,
        hd_strategy_resize_limit=200,
    )
    data.update(**kwargs)
    return Config(**data)


def assert_equal(model, config, gt_name,
                 fx: float = 1, fy: float = 1,
                 img_p=current_dir / "image.png",
                 mask_p=current_dir / "mask.png"):
    img, mask = get_data(fx=fx, fy=fy, img_p=img_p, mask_p=mask_p)
    print(f"Input image shape: {img.shape}")
    res = model(img, mask, config)
    cv2.imwrite(
        str(save_dir / gt_name),
        res,
        [int(cv2.IMWRITE_JPEG_QUALITY), 100, int(cv2.IMWRITE_PNG_COMPRESSION), 0],
    )

    """
    Note that JPEG is lossy compression, so even if it is the highest quality 100, 
    when the saved images is reloaded, a difference occurs with the original pixel value. 
    If you want to save the original images as it is, save it as PNG or BMP.
    """
    # gt = cv2.imread(str(current_dir / gt_name), cv2.IMREAD_UNCHANGED)
    # assert np.array_equal(res, gt)


@pytest.mark.parametrize(
    "strategy", [HDStrategy.ORIGINAL, HDStrategy.RESIZE, HDStrategy.CROP]
)
def test_lama(strategy):
    model = ModelManager(name="lama", device=device)
    assert_equal(
        model,
        get_config(strategy),
        f"lama_{strategy[0].upper() + strategy[1:]}_result.png",
    )

    fx = 1.3
    assert_equal(
        model,
        get_config(strategy),
        f"lama_{strategy[0].upper() + strategy[1:]}_fx_{fx}_result.png",
        fx=1.3,
    )


@pytest.mark.parametrize(
    "strategy", [HDStrategy.ORIGINAL, HDStrategy.RESIZE, HDStrategy.CROP]
)
@pytest.mark.parametrize("ldm_sampler", [LDMSampler.ddim, LDMSampler.plms])
def test_ldm(strategy, ldm_sampler):
    model = ModelManager(name="ldm", device=device)
    cfg = get_config(strategy, ldm_sampler=ldm_sampler)
    assert_equal(
        model, cfg, f"ldm_{strategy[0].upper() + strategy[1:]}_{ldm_sampler}_result.png"
    )

    fx = 1.3
    assert_equal(
        model,
        cfg,
        f"ldm_{strategy[0].upper() + strategy[1:]}_{ldm_sampler}_fx_{fx}_result.png",
        fx=fx,
    )


@pytest.mark.parametrize(
    "strategy", [HDStrategy.ORIGINAL, HDStrategy.RESIZE, HDStrategy.CROP]
)
@pytest.mark.parametrize("zits_wireframe", [False, True])
def test_zits(strategy, zits_wireframe):
    model = ModelManager(name="zits", device=device)
    cfg = get_config(strategy, zits_wireframe=zits_wireframe)
    # os.environ['ZITS_DEBUG_LINE_PATH'] = str(current_dir / 'zits_debug_line.jpg')
    # os.environ['ZITS_DEBUG_EDGE_PATH'] = str(current_dir / 'zits_debug_edge.jpg')
    assert_equal(
        model,
        cfg,
        f"zits_{strategy[0].upper() + strategy[1:]}_wireframe_{zits_wireframe}_result.png",
    )

    fx = 1.3
    assert_equal(
        model,
        cfg,
        f"zits_{strategy.capitalize()}_wireframe_{zits_wireframe}_fx_{fx}_result.png",
        fx=fx,
    )


@pytest.mark.parametrize(
    "strategy", [HDStrategy.ORIGINAL]
)
def test_mat(strategy):
    model = ModelManager(name="mat", device=device)
    cfg = get_config(strategy)

    assert_equal(
        model,
        cfg,
        f"mat_{strategy.capitalize()}_result.png",
    )


@pytest.mark.parametrize(
    "strategy", [HDStrategy.ORIGINAL]
)
def test_fcf(strategy):
    model = ModelManager(name="fcf", device=device)
    cfg = get_config(strategy)

    assert_equal(
        model,
        cfg,
        f"fcf_{strategy.capitalize()}_result.png",
        fx=2,
        fy=2
    )

    assert_equal(
        model,
        cfg,
        f"fcf_{strategy.capitalize()}_result.png",
        fx=3.8,
        fy=2
    )


@pytest.mark.parametrize(
    "strategy", [HDStrategy.ORIGINAL, HDStrategy.RESIZE, HDStrategy.CROP]
)
@pytest.mark.parametrize("cv2_flag", ['INPAINT_NS', 'INPAINT_TELEA'])
@pytest.mark.parametrize("cv2_radius", [3, 15])
def test_cv2(strategy, cv2_flag, cv2_radius):
    model = ModelManager(
        name="cv2",
        device=torch.device(device),
    )
    cfg = get_config(strategy, cv2_flag=cv2_flag, cv2_radius=cv2_radius)
    assert_equal(
        model,
        cfg,
        f"sd_{strategy.capitalize()}_{cv2_flag}_{cv2_radius}.png",
        img_p=current_dir / "overture-creations-5sI6fQgYIuo.png",
        mask_p=current_dir / "overture-creations-5sI6fQgYIuo_mask.png",
    )


@pytest.mark.parametrize("strategy", [HDStrategy.ORIGINAL, HDStrategy.RESIZE, HDStrategy.CROP])
def test_manga(strategy):
    model = ModelManager(
        name="manga",
        device=torch.device(device),
    )
    cfg = get_config(strategy)
    assert_equal(
        model,
        cfg,
        f"sd_{strategy.capitalize()}.png",
        img_p=current_dir / "overture-creations-5sI6fQgYIuo.png",
        mask_p=current_dir / "overture-creations-5sI6fQgYIuo_mask.png",
    )