Spaces:
Runtime error
Runtime error
File size: 10,281 Bytes
252e766 98ec77e 252e766 ae07b63 252e766 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 |
import base64
import imghdr
import os
import cv2
import numpy as np
import torch
from ultralytics import YOLO
from ultralytics.yolo.utils.ops import scale_image
import asyncio
from fastapi import FastAPI, File, UploadFile, Request, Response
from fastapi.responses import JSONResponse
from fastapi.middleware.cors import CORSMiddleware
import uvicorn
# from mangum import Mangum
from argparse import ArgumentParser
import lama_cleaner.server2 as server
from lama_cleaner.helper import (
load_img,
)
# os.environ["TRANSFORMERS_CACHE"] = "/path/to/writable/directory"
app = FastAPI()
# handler = Mangum(app)
origins = ["*"]
app.add_middleware(
CORSMiddleware,
allow_origins=origins,
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
def numpy_to_bytes(image_numpy: np.ndarray, ext: str) -> bytes:
"""
Args:
image_numpy: numpy image
ext: image extension
Returns:
image bytes
"""
data = cv2.imencode(
f".{ext}",
image_numpy,
[int(cv2.IMWRITE_JPEG_QUALITY), 100, int(cv2.IMWRITE_PNG_COMPRESSION), 0],
)[1].tobytes()
return data
def get_image_ext(img_bytes):
"""
Args:
img_bytes: image bytes
Returns:
image extension
"""
if not img_bytes:
raise ValueError("Empty input")
header = img_bytes[:32]
w = imghdr.what("", header)
if w is None:
w = "jpeg"
return w
def predict_on_image(model, img, conf, retina_masks):
"""
Args:
model: YOLOv8 model
img: image (C, H, W)
conf: confidence threshold
retina_masks: use retina masks or not
Returns:
boxes: box with xyxy format, (N, 4)
masks: masks, (N, H, W)
cls: class of masks, (N, )
probs: confidence score, (N, 1)
"""
with torch.no_grad():
result = model(img, conf=conf, retina_masks=retina_masks, scale=1)[0]
boxes, masks, cls, probs = None, None, None, None
if result.boxes.cls.size(0) > 0:
# detection
cls = result.boxes.cls.cpu().numpy().astype(np.int32)
probs = result.boxes.conf.cpu().numpy() # confidence score, (N, 1)
boxes = result.boxes.xyxy.cpu().numpy() # box with xyxy format, (N, 4)
# segmentation
masks = result.masks.masks.cpu().numpy() # masks, (N, H, W)
masks = np.transpose(masks, (1, 2, 0)) # masks, (H, W, N)
# rescale masks to original image
masks = scale_image(masks.shape[:2], masks, result.masks.orig_shape)
masks = np.transpose(masks, (2, 0, 1)) # masks, (N, H, W)
return boxes, masks, cls, probs
def overlay(image, mask, color, alpha, id, resize=None):
"""Overlays a binary mask on an image.
Args:
image: Image to be overlayed on.
mask: Binary mask to overlay.
color: Color to use for the mask.
alpha: Opacity of the mask.
id: id of the mask
resize: Resize the image to this size. If None, no resizing is performed.
Returns:
The overlayed image.
"""
color = color[::-1]
colored_mask = np.expand_dims(mask, 0).repeat(3, axis=0)
colored_mask = np.moveaxis(colored_mask, 0, -1)
masked = np.ma.MaskedArray(image, mask=colored_mask, fill_value=color)
image_overlay = masked.filled()
imgray = cv2.cvtColor(image_overlay, cv2.COLOR_BGR2GRAY)
contour_thickness = 8
_, thresh = cv2.threshold(imgray, 255, 255, 255)
contours, _ = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
imgray = cv2.cvtColor(imgray, cv2.COLOR_GRAY2BGR)
imgray = cv2.drawContours(imgray, contours, -1, (255, 255, 255), contour_thickness)
imgray = np.where(imgray.any(-1, keepdims=True), (46, 36, 225), 0)
if resize is not None:
image = cv2.resize(image.transpose(1, 2, 0), resize)
image_overlay = cv2.resize(image_overlay.transpose(1, 2, 0), resize)
return imgray
async def process_mask(idx, mask_i, boxes, probs, yolo_model, blank_image, cls):
"""Process the mask of the image.
Args:
idx: index of the mask
mask_i: mask of the image
boxes: box with xyxy format, (N, 4)
probs: confidence score, (N, 1)
yolo_model: YOLOv8 model
blank_image: blank image
cls: class of masks, (N, )
Returns:
dictionary_seg: dictionary of the mask of the image
"""
dictionary_seg = {}
maskwith_back = overlay(blank_image, mask_i, color=(255, 155, 155), alpha=0.5, id=idx)
alpha = np.sum(maskwith_back, axis=-1) > 0
alpha = np.uint8(alpha * 255)
maskwith_back = np.dstack((maskwith_back, alpha))
imgencode = await asyncio.get_running_loop().run_in_executor(None, cv2.imencode, '.png', maskwith_back)
mask = base64.b64encode(imgencode[1]).decode('utf-8')
dictionary_seg["confi"] = f'{probs[idx] * 100:.2f}'
dictionary_seg["boxe"] = [int(item) for item in list(boxes[idx])]
dictionary_seg["mask"] = mask
dictionary_seg["cls"] = str(yolo_model.names[cls[idx]])
return dictionary_seg
# @app.middleware("http")
# async def check_auth_header(request: Request, call_next):
# token = request.headers.get('Authorization')
# if token != os.environ.get("SECRET"):
# return JSONResponse(content={'error': 'Authorization header missing or incorrect.'}, status_code=403)
# else:
# response = await call_next(request)
# return response
@app.post("/api/mask")
async def detect_mask(file: UploadFile = File()):
"""
Detects masks in an image uploaded via a POST request and returns a JSON response containing the details of the detected masks.
Args:
None
Parameters:
- file: a file object containing the input image
Returns:
A JSON response containing the details of the detected masks:
- code: 200 if objects were detected, 500 if no objects were detected
- msg: a message indicating whether objects were detected or not
- data: a list of dictionaries, where each dictionary contains the following keys:
- confi: the confidence level of the detected object
- boxe: a list containing the coordinates of the bounding box of the detected object
- mask: the mask of the detected object encoded in base64
- cls: the class of the detected object
Raises:
500: No objects detected
"""
file = await file.read()
img, _ = load_img(file)
# predict by YOLOv8
boxes, masks, cls, probs = predict_on_image(yolo_model, img, conf=0.55, retina_masks=True)
if boxes is None:
return {'code': 500, 'msg': 'No objects detected'}
# overlay masks on original image
blank_image = np.zeros(img.shape, dtype=np.uint8)
data = []
coroutines = [process_mask(idx, mask_i, boxes, probs, yolo_model, blank_image, cls) for idx, mask_i in
enumerate(masks)]
results = await asyncio.gather(*coroutines)
for result in results:
data.append(result)
return {'code': 200, 'msg': "object detected", 'data': data}
@app.post("/api/lama/paint")
async def paint(img: UploadFile = File(), mask: UploadFile = File()):
"""
Endpoint to process an image with a given mask using the server's process function.
Route: '/api/lama/paint'
Method: POST
Parameters:
img: The input image file (JPEG or PNG format).
mask: The mask file (JPEG or PNG format).
Returns:
A JSON object containing the processed image in base64 format under the "image" key.
"""
img = await img.read()
mask = await mask.read()
return {"image": server.process(img, mask)}
@app.post("/api/remove")
async def remove(img: UploadFile = File()):
x = await img.read()
return {"image": server.remove(x)}
@app.post("/api/lama/model")
def switch_model(new_name: str):
return server.switch_model(new_name)
@app.get("/api/lama/model")
def current_model():
return server.current_model()
@app.get("/api/lama/switchmode")
def get_is_disable_model_switch():
return server.get_is_disable_model_switch()
@app.on_event("startup")
def init_data():
model_device = "cpu"
global yolo_model
# TODO Update for local development
# yolo_model = YOLO('yolov8x-seg.pt')
yolo_model = YOLO('/app/yolov8x-seg.pt')
yolo_model.to(model_device)
print(f"YOLO model yolov8x-seg.pt loaded.")
server.initModel()
def create_app(args):
"""
Creates the FastAPI app and adds the endpoints.
Args:
args: The arguments.
"""
uvicorn.run("app:app", host=args.host, port=args.port, reload=args.reload)
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument('--model_name', type=str, default='lama', help='Model name')
parser.add_argument('--host', type=str, default="0.0.0.0")
parser.add_argument('--port', type=int, default=5000)
parser.add_argument('--reload', type=bool, default=True)
parser.add_argument('--model_device', type=str, default='cpu', help='Model device')
parser.add_argument('--disable_model_switch', type=bool, default=False, help='Disable model switch')
parser.add_argument('--gui', type=bool, default=False, help='Enable GUI')
parser.add_argument('--cpu_offload', type=bool, default=False, help='Enable CPU offload')
parser.add_argument('--disable_nsfw', type=bool, default=False, help='Disable NSFW')
parser.add_argument('--enable_xformers', type=bool, default=False, help='Enable xformers')
parser.add_argument('--hf_access_token', type=str, default='', help='Hugging Face access token')
parser.add_argument('--local_files_only', type=bool, default=False, help='Enable local files only')
parser.add_argument('--no_half', type=bool, default=False, help='Disable half')
parser.add_argument('--sd_cpu_textencoder', type=bool, default=False, help='Enable CPU text encoder')
parser.add_argument('--sd_disable_nsfw', type=bool, default=False, help='Disable NSFW')
parser.add_argument('--sd_enable_xformers', type=bool, default=False, help='Enable xformers')
parser.add_argument('--sd_run_local', type=bool, default=False, help='Enable local files only')
args = parser.parse_args()
create_app(args)
|