Spaces:
Runtime error
Runtime error
import gc | |
import torch | |
from lama_cleaner.model.fcf import FcF | |
from lama_cleaner.model.lama import LaMa | |
from lama_cleaner.model.ldm import LDM | |
from lama_cleaner.model.manga import Manga | |
from lama_cleaner.model.mat import MAT | |
from lama_cleaner.model.opencv2 import OpenCV2 | |
from lama_cleaner.model.paint_by_example import PaintByExample | |
from lama_cleaner.model.sd import SD15, SD2 | |
from lama_cleaner.model.zits import ZITS | |
from lama_cleaner.schema import Config | |
models = {"lama": LaMa, "ldm": LDM, "zits": ZITS, "mat": MAT, "fcf": FcF, "sd1.5": SD15, "cv2": OpenCV2, "manga": Manga, | |
"sd2": SD2, "paint_by_example": PaintByExample} | |
class ModelManager: | |
def __init__(self, model_device, **kwargs): | |
self.name = "lama" | |
self.device = model_device | |
self.kwargs = kwargs | |
self.model = self.init_model(self.name, model_device, **kwargs) | |
def init_model(self, name: str, device, **kwargs): | |
if name in models: | |
model = models[name](device, **kwargs) | |
else: | |
raise NotImplementedError(f"Not supported model: {name}") | |
return model | |
def is_downloaded(self, name: str) -> bool: | |
if name in models: | |
return models[name].is_downloaded() | |
else: | |
raise NotImplementedError(f"Not supported model: {name}") | |
def __call__(self, image, mask, config: Config): | |
return self.model(image, mask, config) | |
def switch(self, new_name: str): | |
if new_name == self.name: | |
return | |
try: | |
if (torch.cuda.memory_allocated() > 0): | |
# Clear current loaded model from memory | |
torch.cuda.empty_cache() | |
del self.model | |
gc.collect() | |
self.model = self.init_model(new_name, self.device, **self.kwargs) | |
self.name = new_name | |
except NotImplementedError as e: | |
raise e | |