zestBG / lama_cleaner /tests /test_sd_model.py
krunakuamar's picture
Upload 75 files
252e766
raw
history blame
7.95 kB
from pathlib import Path
import pytest
import torch
from lama_cleaner.model_manager import ModelManager
from lama_cleaner.schema import HDStrategy, SDSampler
from lama_cleaner.tests.test_model import get_config, assert_equal
current_dir = Path(__file__).parent.absolute().resolve()
save_dir = current_dir / 'result'
save_dir.mkdir(exist_ok=True, parents=True)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
device = torch.device(device)
@pytest.mark.parametrize("sd_device", ['cuda'])
@pytest.mark.parametrize("strategy", [HDStrategy.ORIGINAL])
@pytest.mark.parametrize("sampler", [SDSampler.ddim])
@pytest.mark.parametrize("cpu_textencoder", [True, False])
@pytest.mark.parametrize("disable_nsfw", [True, False])
def test_runway_sd_1_5_ddim(sd_device, strategy, sampler, cpu_textencoder, disable_nsfw):
def callback(i, t, latents):
print(f"sd_step_{i}")
if sd_device == 'cuda' and not torch.cuda.is_available():
return
sd_steps = 50 if sd_device == 'cuda' else 1
model = ModelManager(name="sd1.5",
device=torch.device(sd_device),
hf_access_token="",
sd_run_local=True,
disable_nsfw=disable_nsfw,
sd_cpu_textencoder=cpu_textencoder,
callback=callback)
cfg = get_config(strategy, prompt='a fox sitting on a bench', sd_steps=sd_steps)
cfg.sd_sampler = sampler
name = f"device_{sd_device}_{sampler}_cpu_textencoder_{cpu_textencoder}_disnsfw_{disable_nsfw}"
assert_equal(
model,
cfg,
f"runway_sd_{strategy.capitalize()}_{name}.png",
img_p=current_dir / "overture-creations-5sI6fQgYIuo.png",
mask_p=current_dir / "overture-creations-5sI6fQgYIuo_mask.png",
fx=1.3
)
@pytest.mark.parametrize("sd_device", ['cuda'])
@pytest.mark.parametrize("strategy", [HDStrategy.ORIGINAL])
@pytest.mark.parametrize("sampler", [SDSampler.pndm, SDSampler.k_lms, SDSampler.k_euler, SDSampler.k_euler_a])
@pytest.mark.parametrize("cpu_textencoder", [False])
@pytest.mark.parametrize("disable_nsfw", [True])
def test_runway_sd_1_5(sd_device, strategy, sampler, cpu_textencoder, disable_nsfw):
def callback(i, t, latents):
print(f"sd_step_{i}")
if sd_device == 'cuda' and not torch.cuda.is_available():
return
sd_steps = 50 if sd_device == 'cuda' else 1
model = ModelManager(name="sd1.5",
device=torch.device(sd_device),
hf_access_token="",
sd_run_local=True,
disable_nsfw=disable_nsfw,
sd_cpu_textencoder=cpu_textencoder,
callback=callback)
cfg = get_config(strategy, prompt='a fox sitting on a bench', sd_steps=sd_steps)
cfg.sd_sampler = sampler
name = f"device_{sd_device}_{sampler}_cpu_textencoder_{cpu_textencoder}_disnsfw_{disable_nsfw}"
assert_equal(
model,
cfg,
f"runway_sd_{strategy.capitalize()}_{name}.png",
img_p=current_dir / "overture-creations-5sI6fQgYIuo.png",
mask_p=current_dir / "overture-creations-5sI6fQgYIuo_mask.png",
fx=1.3
)
@pytest.mark.parametrize("sd_device", ['cuda'])
@pytest.mark.parametrize("strategy", [HDStrategy.ORIGINAL])
@pytest.mark.parametrize("sampler", [SDSampler.ddim])
def test_runway_sd_1_5_negative_prompt(sd_device, strategy, sampler):
def callback(i, t, latents):
pass
if sd_device == 'cuda' and not torch.cuda.is_available():
return
sd_steps = 50 if sd_device == 'cuda' else 1
model = ModelManager(name="sd1.5",
device=torch.device(sd_device),
hf_access_token="",
sd_run_local=True,
disable_nsfw=False,
sd_cpu_textencoder=False,
callback=callback)
cfg = get_config(
strategy,
sd_steps=sd_steps,
prompt='Face of a fox, high resolution, sitting on a park bench',
negative_prompt='orange, yellow, small',
sd_sampler=sampler,
sd_match_histograms=True
)
name = f"{sampler}_negative_prompt"
assert_equal(
model,
cfg,
f"runway_sd_{strategy.capitalize()}_{name}.png",
img_p=current_dir / "overture-creations-5sI6fQgYIuo.png",
mask_p=current_dir / "overture-creations-5sI6fQgYIuo_mask.png",
fx=1
)
@pytest.mark.parametrize("sd_device", ['cuda'])
@pytest.mark.parametrize("strategy", [HDStrategy.ORIGINAL])
@pytest.mark.parametrize("sampler", [SDSampler.k_euler_a])
@pytest.mark.parametrize("cpu_textencoder", [False])
@pytest.mark.parametrize("disable_nsfw", [False])
def test_runway_sd_1_5_sd_scale(sd_device, strategy, sampler, cpu_textencoder, disable_nsfw):
if sd_device == 'cuda' and not torch.cuda.is_available():
return
sd_steps = 50 if sd_device == 'cuda' else 1
model = ModelManager(name="sd1.5",
device=torch.device(sd_device),
hf_access_token="",
sd_run_local=True,
disable_nsfw=disable_nsfw,
sd_cpu_textencoder=cpu_textencoder)
cfg = get_config(strategy, prompt='a fox sitting on a bench', sd_steps=sd_steps, sd_scale=0.85)
cfg.sd_sampler = sampler
name = f"device_{sd_device}_{sampler}_cpu_textencoder_{cpu_textencoder}_disnsfw_{disable_nsfw}"
assert_equal(
model,
cfg,
f"runway_sd_{strategy.capitalize()}_{name}_sdscale.png",
img_p=current_dir / "overture-creations-5sI6fQgYIuo.png",
mask_p=current_dir / "overture-creations-5sI6fQgYIuo_mask.png",
fx=1.3
)
@pytest.mark.parametrize("sd_device", ['cuda'])
@pytest.mark.parametrize("strategy", [HDStrategy.ORIGINAL])
@pytest.mark.parametrize("sampler", [SDSampler.k_euler_a])
def test_runway_sd_1_5_cpu_offload(sd_device, strategy, sampler):
if sd_device == 'cuda' and not torch.cuda.is_available():
return
sd_steps = 50 if sd_device == 'cuda' else 1
model = ModelManager(name="sd1.5",
device=torch.device(sd_device),
hf_access_token="",
sd_run_local=True,
disable_nsfw=True,
sd_cpu_textencoder=False,
cpu_offload=True)
cfg = get_config(strategy, prompt='a fox sitting on a bench', sd_steps=sd_steps, sd_scale=0.85)
cfg.sd_sampler = sampler
name = f"device_{sd_device}_{sampler}"
assert_equal(
model,
cfg,
f"runway_sd_{strategy.capitalize()}_{name}_cpu_offload.png",
img_p=current_dir / "overture-creations-5sI6fQgYIuo.png",
mask_p=current_dir / "overture-creations-5sI6fQgYIuo_mask.png",
)
@pytest.mark.parametrize("sd_device", ['cpu'])
@pytest.mark.parametrize("strategy", [HDStrategy.ORIGINAL])
@pytest.mark.parametrize("sampler", [SDSampler.k_euler_a])
def test_runway_sd_1_5_cpu_offload_cpu_device(sd_device, strategy, sampler):
model = ModelManager(name="sd1.5",
device=torch.device(sd_device),
hf_access_token="",
sd_run_local=True,
disable_nsfw=False,
sd_cpu_textencoder=False,
cpu_offload=True)
cfg = get_config(strategy, prompt='a fox sitting on a bench', sd_steps=1, sd_scale=0.85)
cfg.sd_sampler = sampler
name = f"device_{sd_device}_{sampler}"
assert_equal(
model,
cfg,
f"runway_sd_{strategy.capitalize()}_{name}_cpu_offload_cpu_device.png",
img_p=current_dir / "overture-creations-5sI6fQgYIuo.png",
mask_p=current_dir / "overture-creations-5sI6fQgYIuo_mask.png",
)