zestBG / lama_cleaner /server2.py
krunakuamar's picture
Upload 75 files
252e766
raw
history blame
7.35 kB
#!/usr/bin/env python3
import os
import sys
# import traceback
__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, '../')))
import base64
import logging
import multiprocessing
import os
import random
import time
import imghdr
from pathlib import Path
import cv2
import torch
import numpy as np
from loguru import logger
from lama_cleaner.interactive_seg import InteractiveSeg
from lama_cleaner.model_manager import ModelManager
from lama_cleaner.schema import Config
from lama_cleaner.file_manager import FileManager
from lama_cleaner.plugins.remove_bg import RemoveBG
try:
torch._C._jit_override_can_fuse_on_cpu(False)
torch._C._jit_override_can_fuse_on_gpu(False)
torch._C._jit_set_texpr_fuser_enabled(False)
torch._C._jit_set_nvfuser_enabled(False)
except:
pass
# Disable ability for Flask to display warning about using a development server in a production environment.
# https://gist.github.com/jerblack/735b9953ba1ab6234abb43174210d356
# cli.show_server_banner = lambda *_: None
# from flask_cors import CORS
from lama_cleaner.helper import (
load_img,
resize_max_size,
)
NUM_THREADS = str(multiprocessing.cpu_count())
# fix libomp problem on windows https://github.com/Sanster/lama-cleaner/issues/56
os.environ["KMP_DUPLICATE_LIB_OK"] = "True"
os.environ["OMP_NUM_THREADS"] = NUM_THREADS
os.environ["OPENBLAS_NUM_THREADS"] = NUM_THREADS
os.environ["MKL_NUM_THREADS"] = NUM_THREADS
os.environ["VECLIB_MAXIMUM_THREADS"] = NUM_THREADS
os.environ["NUMEXPR_NUM_THREADS"] = NUM_THREADS
if os.environ.get("CACHE_DIR"):
os.environ["TORCH_HOME"] = os.environ["CACHE_DIR"]
BUILD_DIR = os.environ.get("LAMA_CLEANER_BUILD_DIR", "app/build")
FILE = Path(__file__).resolve()
ROOT = FILE.parents[1] # YOLOv5 root directory
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT)) # add ROOT to PATH
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
class NoFlaskwebgui(logging.Filter):
def filter(self, record):
return "flaskwebgui-keep-server-alive" not in record.getMessage()
logging.getLogger("werkzeug").addFilter(NoFlaskwebgui())
# app = Flask(__name__, static_folder=os.path.join(BUILD_DIR, "static"))
# app.config["JSON_AS_ASCII"] = False
# CORS(app, expose_headers=["Content-Disposition"])
model: ModelManager = None
thumb: FileManager = None
device = None
input_image_path: str = None
is_disable_model_switch: bool = False
is_enable_file_manager: bool = False
is_desktop: bool = False
plugins = {}
def get_image_ext(img_bytes):
w = imghdr.what("", img_bytes)
if w is None:
w = "jpeg"
return w
def diffuser_callback(i, t, latents):
pass
# socketio.emit('diffusion_step', {'diffusion_step': step})
config = Config(
ldm_steps=25,
ldm_sampler='plms',
hd_strategy='Resize', # Original, Resize, Crop
zits_wireframe=True,
hd_strategy_crop_margin=196,
hd_strategy_crop_trigger_size=1280,
hd_strategy_resize_limit=2048,
prompt="",
negative_prompt="",
use_croper=False,
croper_x=None,
croper_y=None,
croper_height=None,
croper_width=None,
sd_scale=1,
sd_mask_blur=5,
sd_strength=0.75,
sd_steps=50,
sd_guidance_scale=7.5,
sd_sampler="pndm",
sd_seed=42,
sd_match_histograms=False,
cv2_flag="INPAINT_NS",
cv2_radius=40,
paint_by_example_steps=50,
paint_by_example_guidance_scale=7.5,
paint_by_example_mask_blur=5,
paint_by_example_seed=42,
paint_by_example_match_histograms=False,
paint_by_example_example_image=None,
)
def process(origin_image_bytes, mask):
image, alpha_channel = load_img(origin_image_bytes)
mask, _ = load_img(mask, gray=True)
mask = np.where(mask > 0, 255, 0).astype(np.uint8)
if image.shape[:2] != mask.shape[:2]:
return f"Mask shape {mask.shape[:2]} not queal to Image shape {image.shape[:2]}", 400
original_shape = image.shape
interpolation = cv2.INTER_CUBIC
size_limit = 2048
if size_limit == "Original":
size_limit = max(image.shape)
else:
size_limit = int(size_limit)
if config.sd_seed == -1:
config.sd_seed = random.randint(1, 999999999)
if config.paint_by_example_seed == -1:
config.paint_by_example_seed = random.randint(1, 999999999)
logger.info(f"Origin image shape: {original_shape}")
image = resize_max_size(image, size_limit=size_limit,
interpolation=interpolation)
logger.info(f"Resized image shape: {image.shape}")
mask = resize_max_size(mask, size_limit=size_limit,
interpolation=interpolation)
start = time.time()
try:
with torch.no_grad():
res_np_img = model(image, mask, config)
except RuntimeError as e:
torch.cuda.empty_cache()
if "CUDA out of memory. " in str(e):
# NOTE: the string may change?
return "CUDA out of memory", 500
else:
logger.exception(e)
return "Internal Server Error", 500
finally:
torch.cuda.empty_cache()
logger.info(f"process time: {(time.time() - start)}s")
if alpha_channel is not None:
if alpha_channel.shape[:2] != res_np_img.shape[:2]:
alpha_channel = np.resize(
alpha_channel, (res_np_img.shape[1], res_np_img.shape[0])
)
res_np_img = np.concatenate(
(res_np_img, alpha_channel[:, :, np.newaxis]), axis=-1
)
img = cv2.imencode('.jpg', res_np_img)[1]
return base64.b64encode(img).decode('utf-8')
def current_model():
return model.name, 200
def get_is_disable_model_switch():
res = 'true' if is_disable_model_switch else 'false'
return res, 200
def switch_model(new_name):
if is_disable_model_switch:
return "Switch model is disabled", 400
if new_name == model.name:
return "Same model", 200
try:
model.switch(new_name)
except NotImplementedError:
return f"{new_name} not implemented", 403
return f"ok, switch to {new_name}", 200
def remove(origin_image_bytes):
name = RemoveBG.name
rgb_np_img, alpha_channel = load_img(origin_image_bytes)
start = time.time()
try:
bgr_res = plugins[name](rgb_np_img)
except RuntimeError as e:
torch.cuda.empty_cache()
if "CUDA out of memory. " in str(e):
return "CUDA out of memory", 500
else:
logger.exception(e)
return "Internal Server Error", 500
logger.info(f"{name} process time: {(time.time() - start) * 1000}ms")
img = cv2.imencode('.png', bgr_res)[1]
return base64.b64encode(img).decode('utf-8')
def initModel():
global model
global device
global input_image_path
global is_disable_model_switch
global is_enable_file_manager
global is_desktop
global thumb
global plugins
model_device = "cpu"
device = torch.device(model_device)
is_disable_model_switch = False
is_desktop = False
if is_disable_model_switch:
logger.info(
f"Start with --disable-model-switch, model switch on frontend is disable")
model = ModelManager(model_device, callback=diffuser_callback)
plugins[RemoveBG.name] = RemoveBG()