Spaces:
Runtime error
Runtime error
import random | |
import PIL.Image | |
import cv2 | |
import numpy as np | |
import torch | |
from diffusers import PNDMScheduler, DDIMScheduler, LMSDiscreteScheduler, EulerDiscreteScheduler, \ | |
EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler | |
from loguru import logger | |
from lama_cleaner.helper import resize_max_size | |
from lama_cleaner.model.base import InpaintModel | |
from lama_cleaner.model.utils import torch_gc | |
from lama_cleaner.schema import Config, SDSampler | |
class CPUTextEncoderWrapper: | |
def __init__(self, text_encoder, torch_dtype): | |
self.config = text_encoder.config | |
self.text_encoder = text_encoder.to(torch.device('cpu'), non_blocking=True) | |
self.text_encoder = self.text_encoder.to(torch.float32, non_blocking=True) | |
self.torch_dtype = torch_dtype | |
del text_encoder | |
torch_gc() | |
def __call__(self, x, **kwargs): | |
input_device = x.device | |
return [self.text_encoder(x.to(self.text_encoder.device), **kwargs)[0].to(input_device).to(self.torch_dtype)] | |
class SD(InpaintModel): | |
pad_mod = 8 | |
min_size = 512 | |
def init_model(self, device: torch.device, **kwargs): | |
from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline | |
fp16 = not kwargs.get('no_half', False) | |
model_kwargs = {"local_files_only": kwargs.get('local_files_only', kwargs['sd_run_local'])} | |
if kwargs['disable_nsfw'] or kwargs.get('cpu_offload', False): | |
logger.info("Disable Stable Diffusion Model NSFW checker") | |
model_kwargs.update(dict( | |
safety_checker=None, | |
feature_extractor=None, | |
requires_safety_checker=False | |
)) | |
use_gpu = device == torch.device('cuda') and torch.cuda.is_available() | |
torch_dtype = torch.float16 if use_gpu and fp16 else torch.float32 | |
self.model = StableDiffusionInpaintPipeline.from_pretrained( | |
self.model_id_or_path, | |
revision="fp16" if use_gpu and fp16 else "main", | |
torch_dtype=torch_dtype, | |
use_auth_token=kwargs["hf_access_token"], | |
**model_kwargs | |
) | |
# https://huggingface.co/docs/diffusers/v0.7.0/en/api/pipelines/stable_diffusion#diffusers.StableDiffusionInpaintPipeline.enable_attention_slicing | |
self.model.enable_attention_slicing() | |
# https://huggingface.co/docs/diffusers/v0.7.0/en/optimization/fp16#memory-efficient-attention | |
if kwargs.get('enable_xformers', False): | |
self.model.enable_xformers_memory_efficient_attention() | |
if kwargs.get('cpu_offload', False) and use_gpu: | |
# TODO: gpu_id | |
logger.info("Enable sequential cpu offload") | |
self.model.enable_sequential_cpu_offload(gpu_id=0) | |
else: | |
self.model = self.model.to(device) | |
if kwargs['sd_cpu_textencoder']: | |
logger.info("Run Stable Diffusion TextEncoder on CPU") | |
self.model.text_encoder = CPUTextEncoderWrapper(self.model.text_encoder, torch_dtype) | |
self.callback = kwargs.pop("callback", None) | |
def _scaled_pad_forward(self, image, mask, config: Config): | |
longer_side_length = int(config.sd_scale * max(image.shape[:2])) | |
origin_size = image.shape[:2] | |
downsize_image = resize_max_size(image, size_limit=longer_side_length) | |
downsize_mask = resize_max_size(mask, size_limit=longer_side_length) | |
logger.info( | |
f"Resize image to do sd inpainting: {image.shape} -> {downsize_image.shape}" | |
) | |
inpaint_result = self._pad_forward(downsize_image, downsize_mask, config) | |
# only paste masked area result | |
inpaint_result = cv2.resize( | |
inpaint_result, | |
(origin_size[1], origin_size[0]), | |
interpolation=cv2.INTER_CUBIC, | |
) | |
original_pixel_indices = mask < 127 | |
inpaint_result[original_pixel_indices] = image[:, :, ::-1][original_pixel_indices] | |
return inpaint_result | |
def forward(self, image, mask, config: Config): | |
"""Input image and output image have same size | |
image: [H, W, C] RGB | |
mask: [H, W, 1] 255 means area to repaint | |
return: BGR IMAGE | |
""" | |
scheduler_config = self.model.scheduler.config | |
if config.sd_sampler == SDSampler.ddim: | |
scheduler = DDIMScheduler.from_config(scheduler_config) | |
elif config.sd_sampler == SDSampler.pndm: | |
scheduler = PNDMScheduler.from_config(scheduler_config) | |
elif config.sd_sampler == SDSampler.k_lms: | |
scheduler = LMSDiscreteScheduler.from_config(scheduler_config) | |
elif config.sd_sampler == SDSampler.k_euler: | |
scheduler = EulerDiscreteScheduler.from_config(scheduler_config) | |
elif config.sd_sampler == SDSampler.k_euler_a: | |
scheduler = EulerAncestralDiscreteScheduler.from_config(scheduler_config) | |
elif config.sd_sampler == SDSampler.dpm_plus_plus: | |
scheduler = DPMSolverMultistepScheduler.from_config(scheduler_config) | |
else: | |
raise ValueError(config.sd_sampler) | |
self.model.scheduler = scheduler | |
seed = config.sd_seed | |
random.seed(seed) | |
np.random.seed(seed) | |
torch.manual_seed(seed) | |
torch.cuda.manual_seed_all(seed) | |
if config.sd_mask_blur != 0: | |
k = 2 * config.sd_mask_blur + 1 | |
mask = cv2.GaussianBlur(mask, (k, k), 0)[:, :, np.newaxis] | |
img_h, img_w = image.shape[:2] | |
output = self.model( | |
image=PIL.Image.fromarray(image), | |
prompt=config.prompt, | |
negative_prompt=config.negative_prompt, | |
mask_image=PIL.Image.fromarray(mask[:, :, -1], mode="L"), | |
num_inference_steps=config.sd_steps, | |
guidance_scale=config.sd_guidance_scale, | |
output_type="np.array", | |
callback=self.callback, | |
height=img_h, | |
width=img_w, | |
).images[0] | |
output = (output * 255).round().astype("uint8") | |
output = cv2.cvtColor(output, cv2.COLOR_RGB2BGR) | |
return output | |
def __call__(self, image, mask, config: Config): | |
""" | |
images: [H, W, C] RGB, not normalized | |
masks: [H, W] | |
return: BGR IMAGE | |
""" | |
# boxes = boxes_from_mask(mask) | |
if config.use_croper: | |
crop_img, crop_mask, (l, t, r, b) = self._apply_cropper(image, mask, config) | |
crop_image = self._scaled_pad_forward(crop_img, crop_mask, config) | |
inpaint_result = image[:, :, ::-1] | |
inpaint_result[t:b, l:r, :] = crop_image | |
else: | |
inpaint_result = self._scaled_pad_forward(image, mask, config) | |
return inpaint_result | |
def forward_post_process(self, result, image, mask, config): | |
if config.sd_match_histograms: | |
result = self._match_histograms(result, image[:, :, ::-1], mask) | |
if config.sd_mask_blur != 0: | |
k = 2 * config.sd_mask_blur + 1 | |
mask = cv2.GaussianBlur(mask, (k, k), 0) | |
return result, image, mask | |
def is_downloaded() -> bool: | |
# model will be downloaded when app start, and can't switch in frontend settings | |
return True | |
class SD15(SD): | |
model_id_or_path = "runwayml/stable-diffusion-inpainting" | |
class SD2(SD): | |
model_id_or_path = "stabilityai/stable-diffusion-2-inpainting" | |