import gc import torch from lama_cleaner.model.fcf import FcF from lama_cleaner.model.lama import LaMa from lama_cleaner.model.ldm import LDM from lama_cleaner.model.manga import Manga from lama_cleaner.model.mat import MAT from lama_cleaner.model.opencv2 import OpenCV2 from lama_cleaner.model.paint_by_example import PaintByExample from lama_cleaner.model.sd import SD15, SD2 from lama_cleaner.model.zits import ZITS from lama_cleaner.schema import Config models = {"lama": LaMa, "ldm": LDM, "zits": ZITS, "mat": MAT, "fcf": FcF, "sd1.5": SD15, "cv2": OpenCV2, "manga": Manga, "sd2": SD2, "paint_by_example": PaintByExample} class ModelManager: def __init__(self, model_device, **kwargs): self.name = "lama" self.device = model_device self.kwargs = kwargs self.model = self.init_model(self.name, model_device, **kwargs) def init_model(self, name: str, device, **kwargs): if name in models: model = models[name](device, **kwargs) else: raise NotImplementedError(f"Not supported model: {name}") return model def is_downloaded(self, name: str) -> bool: if name in models: return models[name].is_downloaded() else: raise NotImplementedError(f"Not supported model: {name}") def __call__(self, image, mask, config: Config): return self.model(image, mask, config) def switch(self, new_name: str): if new_name == self.name: return try: if (torch.cuda.memory_allocated() > 0): # Clear current loaded model from memory torch.cuda.empty_cache() del self.model gc.collect() self.model = self.init_model(new_name, self.device, **self.kwargs) self.name = new_name except NotImplementedError as e: raise e