Spaces:
Running
Running
import gradio as gr | |
import pdfplumber | |
from transformers import pipeline | |
# L偶ejszy model NER (publicznie dost臋pny) | |
extractor = pipeline("ner", model="dbmdz/bert-large-cased-finetuned-conll03-english", aggregation_strategy="simple") | |
def extract_seller(pdf_file): | |
with pdfplumber.open(pdf_file) as pdf: | |
# Pobranie tekstu z PDF | |
full_text = "\n".join(page.extract_text() for page in pdf.pages if page.extract_text()) | |
# Podzia艂 tekstu na kr贸tkie fragmenty (maks. 512 znak贸w) | |
chunks = [full_text[i:i+512] for i in range(0, len(full_text), 512)] | |
seller_name = None | |
for chunk in chunks: | |
entities = extractor(chunk) | |
for entity in entities: | |
if "ORG" in entity["entity_group"]: # | |