Spaces:
Running
Running
Create train_model.py
Browse files- train_model.py +29 -0
train_model.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import LayoutLMForTokenClassification, Trainer, TrainingArguments
|
2 |
+
from datasets import load_dataset
|
3 |
+
|
4 |
+
# Wczytanie przygotowanego zbioru danych
|
5 |
+
dataset = load_dataset("json", data_files="training_data.json")
|
6 |
+
|
7 |
+
# Ładowanie modelu LayoutLM do dostrajania
|
8 |
+
model = LayoutLMForTokenClassification.from_pretrained("microsoft/layoutlmv3-base", num_labels=5)
|
9 |
+
|
10 |
+
training_args = TrainingArguments(
|
11 |
+
output_dir="./layoutlmv3_finetuned",
|
12 |
+
per_device_train_batch_size=4,
|
13 |
+
per_device_eval_batch_size=4,
|
14 |
+
num_train_epochs=5,
|
15 |
+
evaluation_strategy="epoch",
|
16 |
+
save_strategy="epoch"
|
17 |
+
)
|
18 |
+
|
19 |
+
trainer = Trainer(
|
20 |
+
model=model,
|
21 |
+
args=training_args,
|
22 |
+
train_dataset=dataset["train"],
|
23 |
+
eval_dataset=dataset["test"]
|
24 |
+
)
|
25 |
+
|
26 |
+
trainer.train()
|
27 |
+
|
28 |
+
# Zapisanie modelu
|
29 |
+
model.save_pretrained("./layoutlmv3_finetuned")
|