Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -2,25 +2,25 @@ import gradio as gr
|
|
2 |
import pdfplumber
|
3 |
from transformers import pipeline
|
4 |
|
5 |
-
# Inicjalizacja modelu
|
6 |
-
extractor = pipeline("ner", model="dslim/bert-base-NER")
|
7 |
|
8 |
def extract_info(pdf_file):
|
9 |
with pdfplumber.open(pdf_file) as pdf:
|
10 |
-
text = ""
|
11 |
-
for page in pdf.pages:
|
12 |
-
text += page.extract_text() + "\n"
|
13 |
|
14 |
# Przetwarzanie tekstu modelem NLP
|
15 |
entities = extractor(text)
|
16 |
|
17 |
-
#
|
18 |
extracted_data = {}
|
19 |
for entity in entities:
|
20 |
-
label = entity[
|
21 |
-
word = entity[
|
|
|
22 |
if label not in extracted_data:
|
23 |
extracted_data[label] = []
|
|
|
24 |
extracted_data[label].append(word)
|
25 |
|
26 |
return extracted_data
|
|
|
2 |
import pdfplumber
|
3 |
from transformers import pipeline
|
4 |
|
5 |
+
# Inicjalizacja modelu NER
|
6 |
+
extractor = pipeline("ner", model="dslim/bert-base-NER", aggregation_strategy="simple")
|
7 |
|
8 |
def extract_info(pdf_file):
|
9 |
with pdfplumber.open(pdf_file) as pdf:
|
10 |
+
text = "\n".join(page.extract_text() for page in pdf.pages if page.extract_text())
|
|
|
|
|
11 |
|
12 |
# Przetwarzanie tekstu modelem NLP
|
13 |
entities = extractor(text)
|
14 |
|
15 |
+
# Formatowanie wynik贸w
|
16 |
extracted_data = {}
|
17 |
for entity in entities:
|
18 |
+
label = entity["entity_group"]
|
19 |
+
word = entity["word"]
|
20 |
+
|
21 |
if label not in extracted_data:
|
22 |
extracted_data[label] = []
|
23 |
+
|
24 |
extracted_data[label].append(word)
|
25 |
|
26 |
return extracted_data
|