Spaces:
Runtime error
Runtime error
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# %%
|
2 |
+
import gradio as gr
|
3 |
+
import torchaudio
|
4 |
+
from transformers import AutoModelForAudioClassification, AutoFeatureExtractor
|
5 |
+
import librosa
|
6 |
+
import torch
|
7 |
+
|
8 |
+
# %%
|
9 |
+
def dump_pickle(file_path: str, file, mode: str = "wb"):
|
10 |
+
import pickle
|
11 |
+
|
12 |
+
with open(file_path, mode=mode) as f:
|
13 |
+
pickle.dump(file, f)
|
14 |
+
|
15 |
+
|
16 |
+
def load_pickle(file_path: str, mode: str = "rb", encoding=""):
|
17 |
+
import pickle
|
18 |
+
|
19 |
+
with open(file_path, mode=mode) as f:
|
20 |
+
return pickle.load(f, encoding=encoding)
|
21 |
+
|
22 |
+
# %%
|
23 |
+
label2id = load_pickle('/data/audio-classification-pytorch/wav2vec2/results/best/label2id.pkl')
|
24 |
+
id2label = load_pickle('/data/audio-classification-pytorch/wav2vec2/results/best/id2label.pkl')
|
25 |
+
|
26 |
+
# %%
|
27 |
+
model = AutoModelForAudioClassification.from_pretrained(
|
28 |
+
"facebook/wav2vec2-base", num_labels=len(label2id), label2id=label2id, id2label=id2label
|
29 |
+
)
|
30 |
+
|
31 |
+
# %%
|
32 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base")
|
33 |
+
|
34 |
+
# %%
|
35 |
+
checkpoint = torch.load('/data/audio-classification-pytorch/wav2vec2/results/best/pytorch_model.bin')
|
36 |
+
|
37 |
+
# %%
|
38 |
+
model.load_state_dict(checkpoint)
|
39 |
+
|
40 |
+
# %%
|
41 |
+
def predict(input):
|
42 |
+
waveform, sr = librosa.load(input)
|
43 |
+
waveform = torch.from_numpy(waveform).unsqueeze(0)
|
44 |
+
waveform = torchaudio.transforms.Resample(sr, 16_000)(waveform)
|
45 |
+
inputs = feature_extractor(waveform, sampling_rate=feature_extractor.sampling_rate,
|
46 |
+
max_length=16000, truncation=True)
|
47 |
+
tensor = torch.tensor(inputs['input_values'][0])
|
48 |
+
with torch.no_grad():
|
49 |
+
output = model(tensor)
|
50 |
+
logits = output['logits'][0]
|
51 |
+
label_id = torch.argmax(logits).item()
|
52 |
+
label_name = id2label[str(label_id)]
|
53 |
+
|
54 |
+
return label_name
|
55 |
+
|
56 |
+
# %%
|
57 |
+
demo = gr.Interface(
|
58 |
+
fn=predict,
|
59 |
+
inputs=gr.Audio(source="microphone", type="filepath", label="Speak to classify your voice!"), # record audio, save in temp file to feed to inference func
|
60 |
+
outputs="text"
|
61 |
+
)
|
62 |
+
|
63 |
+
# %%
|
64 |
+
demo.launch()
|
65 |
+
|
66 |
+
# %%
|
67 |
+
|
68 |
+
|
69 |
+
|