File size: 7,893 Bytes
8d7815c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import argparse
import os
import random
import io
from PIL import Image
import numpy as np
import torch
import torch.backends.cudnn as cudnn

from minigpt4.common.config import Config
from minigpt4.common.dist_utils import get_rank
from minigpt4.common.registry import registry
from minigpt4.conversation.conversation import Chat, CONV_VISION
from fastapi import FastAPI, HTTPException, File, UploadFile,Form
from fastapi.responses import RedirectResponse
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
from PIL import Image
import io
import uvicorn
# imports modules for registration
from minigpt4.datasets.builders import *
from minigpt4.models import *
from minigpt4.processors import *
from minigpt4.runners import *
from minigpt4.tasks import *


def parse_args():
    parser = argparse.ArgumentParser(description="Demo")
    parser.add_argument("--cfg-path", type=str, default='eval_configs/minigpt4.yaml',
                        help="path to configuration file.")
    parser.add_argument(
        "--options",
        nargs="+",
        help="override some settings in the used config, the key-value pair "
             "in xxx=yyy format will be merged into config file (deprecate), "
             "change to --cfg-options instead.",
    )
    args = parser.parse_args()
    return args


def setup_seeds(config):
    seed = config.run_cfg.seed + get_rank()

    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)

    cudnn.benchmark = False
    cudnn.deterministic = True


# ========================================
#             Model Initialization
# ========================================

SHARED_UI_WARNING = f'''### [NOTE] It is possible that you are waiting in a lengthy queue.

You can duplicate and use it with a paid private GPU.

<a class="duplicate-button" style="display:inline-block" target="_blank" href="https://huggingface.co/spaces/Vision-CAIR/minigpt4?duplicate=true"><img style="margin-top:0;margin-bottom:0" src="https://huggingface.co/datasets/huggingface/badges/raw/main/duplicate-this-space-xl-dark.svg" alt="Duplicate Space"></a>

Alternatively, you can also use the demo on our [project page](https://minigpt-4.github.io).
'''

print('Initializing Chat')
cfg = Config(parse_args())

model_config = cfg.model_cfg
model_cls = registry.get_model_class(model_config.arch)
model = model_cls.from_config(model_config).to('cuda:0')

vis_processor_cfg = cfg.datasets_cfg.cc_align.vis_processor.train
vis_processor = registry.get_processor_class(vis_processor_cfg.name).from_config(vis_processor_cfg)
chat = Chat(model, vis_processor)
print('Initialization Finished')

# ========================================
#             Gradio Setting
# ========================================

app = FastAPI()
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],  # Replace "*" with your frontend domain
    allow_credentials=True,
    allow_methods=["GET", "POST"],
    allow_headers=["*"],
)


class Item(BaseModel):
    gr_img: UploadFile = File(..., description="Image file")
    text_input: str = None

@app.get("/")
async def root():
    return RedirectResponse(url="/docs")

@app.post("/process/")
async def process_item(
        file: UploadFile = File(...),
        prompt: str = Form(...),
):
    chat_state = CONV_VISION.copy()
    img_list = []
    chatbot=[]
    pil_image = Image.open(io.BytesIO(await file.read()))
    chat.upload_img(pil_image, chat_state, img_list)
    chat.ask(prompt, chat_state)
    chatbot = chatbot + [[prompt, None]]
    llm_message = chat.answer(conv=chat_state, img_list=img_list, max_new_tokens=300, num_beams=1, temperature=temperature,
                max_length=2000)[0]
    chatbot[-1][1] = llm_message
    return chatbot, chat_state, img_list


# if __name__ == "__main__":
#     # Run the FastAPI app with Uvicorn
#     uvicorn.run("app:app", host="0.0.0.0", port=7860, reload=True)




# def gradio_reset(chat_state, img_list):
#     if chat_state is not None:
#         chat_state.messages = []
#     if img_list is not None:
#         img_list = []
#     return None, gr.update(value=None, interactive=True), gr.update(placeholder='Please upload your image first',
#                                                                     interactive=False), gr.update(
#         value="Upload & Start Chat", interactive=True), chat_state, img_list
#
#
# def upload_img(gr_img, text_input, chat_state):
#     if gr_img is None:
#         return None, None, gr.update(interactive=True), chat_state, None
#     chat_state = CONV_VISION.copy()
#     img_list = []
#     llm_message = chat.upload_img(gr_img, chat_state, img_list)
#     return gr.update(interactive=False), gr.update(interactive=True, placeholder='Type and press Enter'), gr.update(
#         value="Start Chatting", interactive=False), chat_state, img_list
#
#
# def gradio_ask(user_message, chatbot, chat_state):
#     if len(user_message) == 0:
#         return gr.update(interactive=True, placeholder='Input should not be empty!'), chatbot, chat_state
#     chat.ask(user_message, chat_state)
#     chatbot = chatbot + [[user_message, None]]
#     return '', chatbot, chat_state
#
#
# def gradio_answer(chatbot, chat_state, img_list, num_beams, temperature):
#     llm_message = \
#     chat.answer(conv=chat_state, img_list=img_list, max_new_tokens=300, num_beams=1, temperature=temperature,
#                 max_length=2000)[0]
#     chatbot[-1][1] = llm_message
#     return chatbot, chat_state, img_list
#
#
# title = """<h1 align="center">Demo of MiniGPT-4</h1>"""
# description = """<h3>This is the demo of MiniGPT-4. Upload your images and start chatting!</h3>"""
# article = """<div style='display:flex; gap: 0.25rem; '><a href='https://minigpt-4.github.io'><img src='https://img.shields.io/badge/Project-Page-Green'></a><a href='https://github.com/Vision-CAIR/MiniGPT-4'><img src='https://img.shields.io/badge/Github-Code-blue'></a><a href='https://github.com/TsuTikgiau/blip2-llm/blob/release_prepare/MiniGPT_4.pdf'><img src='https://img.shields.io/badge/Paper-PDF-red'></a></div>
# """
#
# # TODO show examples below
#
# with gr.Blocks() as demo:
#     gr.Markdown(title)
#     gr.Markdown(SHARED_UI_WARNING)
#     gr.Markdown(description)
#     gr.Markdown(article)
#
#     with gr.Row():
#         with gr.Column(scale=0.5):
#             image = gr.Image(type="pil")
#             upload_button = gr.Button(value="Upload & Start Chat", interactive=True, variant="primary")
#             clear = gr.Button("Restart")
#
#             num_beams = gr.Slider(
#                 minimum=1,
#                 maximum=5,
#                 value=1,
#                 step=1,
#                 interactive=True,
#                 label="beam search numbers)",
#             )
#
#             temperature = gr.Slider(
#                 minimum=0.1,
#                 maximum=2.0,
#                 value=1.0,
#                 step=0.1,
#                 interactive=True,
#                 label="Temperature",
#             )
#
#         with gr.Column():
#             chat_state = gr.State()
#             img_list = gr.State()
#             chatbot = gr.Chatbot(label='MiniGPT-4')
#             text_input = gr.Textbox(label='User', placeholder='Please upload your image first', interactive=False)
#
#     upload_button.click(upload_img, [image, text_input, chat_state],
#                         [image, text_input, upload_button, chat_state, img_list])
#
#     text_input.submit(gradio_ask, [text_input, chatbot, chat_state], [text_input, chatbot, chat_state]).then(
#         gradio_answer, [chatbot, chat_state, img_list, num_beams, temperature], [chatbot, chat_state, img_list]
#     )
#     clear.click(gradio_reset, [chat_state, img_list], [chatbot, image, text_input, upload_button, chat_state, img_list],
#                 queue=False)
#
# demo.launch(enable_queue=True)