ktllc's picture
Update app.py
c652364
raw
history blame
1.5 kB
import numpy as np
import clip
import torch
import gradio as gr
from PIL import Image
import base64
from io import BytesIO
# Load the CLIP model
model, preprocess = clip.load("ViT-B/32")
device = "cuda" if torch.cuda.is available() else "cpu"
model.to(device).eval()
def find_similarity(image_base64, text_input):
# Decode the base64 image string to bytes
image_bytes = base64.b64decode(image_base64)
image = Image.open(BytesIO(image_bytes))
# Preprocess the image
image = preprocess(image).unsqueeze(0).to(device)
# Prepare input text
text_tokens = clip.tokenize([text_input]).to(device)
# Encode image and text features
with torch.no_grad():
image_features = model.encode_image(image).float()
text_features = model.encode_text(text_tokens).float()
# Normalize features and calculate similarity
image_features /= image_features.norm(dim=-1, keepdim=True)
text_features /= text_features.norm(dim=-1, keepdim=True)
similarity = (text_features @ image_features.T).cpu().numpy()
return similarity[0, 0]
iface = gr.Interface(
fn=find_similarity,
inputs=[
gr.inputs.Textbox(lines=3, label="Enter Base64 Image"),
gr.inputs.Textbox(lines=3, label="Enter Text"),
],
outputs="number",
live=True,
interpretation="default",
title="CLIP Model Image-Text Cosine Similarity",
description="Enter a base64-encoded image and text to find their cosine similarity.",
)
iface.launch()