ktllc commited on
Commit
30d5af0
·
1 Parent(s): 19c5ccc

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +52 -0
app.py ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import clip
3
+ import torch
4
+ import gradio as gr
5
+ from PIL import Image
6
+ import os
7
+ import base64
8
+ from io import BytesIO
9
+
10
+ # Load the CLIP model
11
+ model, preprocess = clip.load("ViT-B/32")
12
+ device = "cuda" if torch.cuda.is_available() else "cpu"
13
+ model.to(device).eval()
14
+
15
+ # Define the Business Listing variable
16
+ Business_Listing = "Air Guide"
17
+
18
+ def find_similarity(image_base64, text_input):
19
+ # Decode the base64 image string to bytes
20
+ image_bytes = base64.b64decode(image_base64)
21
+ image = Image.open(BytesIO(image_bytes))
22
+
23
+ # Preprocess the image
24
+ image = preprocess(image).unsqueeze(0).to(device)
25
+
26
+ # Prepare input text
27
+ text_tokens = clip.tokenize([text_input]).to(device)
28
+
29
+ # Encode image and text features
30
+ with torch.no_grad():
31
+ image_features = model.encode_image(image).float()
32
+ text_features = model.encode_text(text_tokens).float()
33
+
34
+ # Normalize features and calculate similarity
35
+ image_features /= image_features.norm(dim=-1, keepdim=True)
36
+ text_features /= text_features.norm(dim=-1, keepdim=True)
37
+ similarity = (text_features @ image_features.T).cpu().numpy()
38
+
39
+ return similarity[0, 0]
40
+
41
+ # Define a Gradio interface
42
+ iface = gr.Interface(
43
+ fn=find_similarity,
44
+ inputs=["text", gr.inputs.Textbox(lines=3, label="Enter Base64 Image"), "text"],
45
+ outputs="number",
46
+ live=True,
47
+ interpretation="default",
48
+ title="CLIP Model Image-Text Cosine Similarity",
49
+ description="Enter a base64-encoded image and text to find their cosine similarity.",
50
+ )
51
+
52
+ iface.launch()