Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import clip
|
3 |
+
import torch
|
4 |
+
import gradio as gr
|
5 |
+
from PIL import Image
|
6 |
+
import os
|
7 |
+
import base64
|
8 |
+
from io import BytesIO
|
9 |
+
|
10 |
+
# Load the CLIP model
|
11 |
+
model, preprocess = clip.load("ViT-B/32")
|
12 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
13 |
+
model.to(device).eval()
|
14 |
+
|
15 |
+
# Define the Business Listing variable
|
16 |
+
Business_Listing = "Air Guide"
|
17 |
+
|
18 |
+
def find_similarity(image_base64, text_input):
|
19 |
+
# Decode the base64 image string to bytes
|
20 |
+
image_bytes = base64.b64decode(image_base64)
|
21 |
+
image = Image.open(BytesIO(image_bytes))
|
22 |
+
|
23 |
+
# Preprocess the image
|
24 |
+
image = preprocess(image).unsqueeze(0).to(device)
|
25 |
+
|
26 |
+
# Prepare input text
|
27 |
+
text_tokens = clip.tokenize([text_input]).to(device)
|
28 |
+
|
29 |
+
# Encode image and text features
|
30 |
+
with torch.no_grad():
|
31 |
+
image_features = model.encode_image(image).float()
|
32 |
+
text_features = model.encode_text(text_tokens).float()
|
33 |
+
|
34 |
+
# Normalize features and calculate similarity
|
35 |
+
image_features /= image_features.norm(dim=-1, keepdim=True)
|
36 |
+
text_features /= text_features.norm(dim=-1, keepdim=True)
|
37 |
+
similarity = (text_features @ image_features.T).cpu().numpy()
|
38 |
+
|
39 |
+
return similarity[0, 0]
|
40 |
+
|
41 |
+
# Define a Gradio interface
|
42 |
+
iface = gr.Interface(
|
43 |
+
fn=find_similarity,
|
44 |
+
inputs=["text", gr.inputs.Textbox(lines=3, label="Enter Base64 Image"), "text"],
|
45 |
+
outputs="number",
|
46 |
+
live=True,
|
47 |
+
interpretation="default",
|
48 |
+
title="CLIP Model Image-Text Cosine Similarity",
|
49 |
+
description="Enter a base64-encoded image and text to find their cosine similarity.",
|
50 |
+
)
|
51 |
+
|
52 |
+
iface.launch()
|