File size: 2,934 Bytes
8ab94bb
d666f15
8ab94bb
 
 
d666f15
 
 
 
8ab94bb
 
 
 
 
 
d666f15
 
 
c0b02e4
 
d666f15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ab94bb
 
d666f15
8ab94bb
 
 
d666f15
8ab94bb
 
 
 
 
 
 
 
d666f15
 
8ab94bb
d666f15
 
28d01e2
d666f15
 
8ab94bb
d666f15
 
8ab94bb
 
 
d666f15
 
8ab94bb
 
d666f15
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import gradio as gr
import cv2
import numpy as np
from segment_anything import sam_model_registry, SamAutomaticMaskGenerator
import base64
from PIL import Image
from io import BytesIO
import torch
import clip

# Load the segmentation model
sam_checkpoint = "sam_vit_h_4b8939.pth"
model_type = "vit_h"
sam = sam_model_registry[model_type](checkpoint=sam_checkpoint)

# Load the CLIP model
device = "cuda" if torch.cuda.is_available() else "cpu"
model, preprocess = clip.load("ViT-B/32", device=device)


def find_similarity(base64_image, text_input):
    # Decode the base64 image to bytes
    image_bytes = base64.b64decode(base64_image)

    # Convert the bytes to a PIL image
    image = Image.open(BytesIO(image_bytes))

    # Preprocess the image
    image = preprocess(image).unsqueeze(0).to(device)

    # Prepare input text
    text_tokens = clip.tokenize([text_input]).to(device)

    # Encode image and text features


    with torch.no_grad():
        image_features = model.encode_image(image)
        text_features = model.encode_text(text_tokens)

    # Normalize features and calculate similarity
    image_features /= image_features.norm(dim=-1, keepdim=True)
    text_features /= text_features.norm(dim=-1, keepdim=True)
    similarity = (text_features @ image_features.T).squeeze(0).cpu().numpy()

    return similarity


# Define a function for image segmentation
def segment_image(input_image, text_input):
    image = cv2.cvtColor(input_image, cv2.COLOR_BGR2RGB)
    mask_generator = SamAutomaticMaskGenerator(sam)
    masks = mask_generator.generate(image)

    segmented_regions = []  # List to store segmented regions with similarity scores

    for i, mask_dict in enumerate(masks):
        mask_data = (mask_dict['segmentation'] * 255).astype(np.uint8)
        segmented_region = cv2.bitwise_and(input_image, input_image, mask=mask_data)

        x, y, w, h = map(int, mask_dict['bbox'])
        cropped_region = segmented_region[y:y+h, x:x+w]

        # Convert to base64 image
        _, buffer = cv2.imencode(".png", cv2.cvtColor(cropped_region, cv2.COLOR_BGR2RGB))
        segmented_image_base64 = base64.b64encode(buffer).decode()

        # Calculate similarity for the segmented image
        similarity = find_similarity(segmented_image_base64, text_input)

        # Append the segmented image and its similarity score
        segmented_regions.append({"image": segmented_image_base64, "similarity": similarity})

    # Sort the segmented images by similarity in descending order
    segmented_regions.sort(key=lambda x: x["similarity"], reverse=True)

    # Return the segmented images in descending order of similarity
    return segmented_regions

# Create Gradio components
input_image = gr.inputs.Image()
text_input = gr.inputs.Text()
output_images = gr.outputs.JSON()

# Create a Gradio interface
gr.Interface(fn=segment_image, inputs=[input_image, text_input], outputs=output_images).launch()