Spaces:
Running
Running
File size: 1,930 Bytes
1490e6b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
import cv2
import numpy as np
def sort_by_brightness(palette: np.uint8):
"""
Sorts given color palette by brightness.
https://stackoverflow.com/a/596241
"""
luminosity = (
0.2126 * palette[:, 2] + 0.7152 * palette[:, 1] + 0.0722 * palette[:, 0]
)
return palette[np.argsort(luminosity)]
def display_palette(palette: np.uint8, sort=True):
"""
Generates an image displaying given color palette.
"""
swatch_size = 100
num_colors = palette.shape[0]
palette_image = np.zeros((swatch_size, swatch_size * num_colors, 3), dtype=np.uint8)
if sort:
palette = sort_by_brightness(palette)
for i, color in enumerate(palette):
palette_image[:, i * swatch_size : (i + 1) * swatch_size] = color
return palette_image
def extract_color_palette(img, k: int):
"""
Extracts color palette from the given image using k-means clustering.
"""
pixels = img.reshape((-1, 3))
pixels = np.float32(pixels)
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 10, 1.0)
_, labels, centers = cv2.kmeans(
pixels, k, None, criteria, 10, cv2.KMEANS_RANDOM_CENTERS
)
palette = np.uint8(centers)
return palette, labels
def pixelate(img, pixel_size: int, blur=False, use_palette=False, k=8):
"""
Pixelates an image by reducing its pixel resolution and optionally applying blur effect and color quantization.
"""
palette = None
if use_palette:
palette, labels = extract_color_palette(img, k)
res = palette[labels.flatten()]
img = res.reshape((img.shape))
palette = display_palette(palette, sort=True)
if blur:
img = cv2.blur(img, (7, 7))
for i in range(0, img.shape[0], pixel_size):
for j in range(0, img.shape[1], pixel_size):
img[i : i + pixel_size, j : j + pixel_size] = img[i][j]
return img, palette
|