import cv2 import numpy as np def sort_by_brightness(palette: np.uint8): """ Sorts given color palette by brightness. https://stackoverflow.com/a/596241 """ luminosity = ( 0.2126 * palette[:, 2] + 0.7152 * palette[:, 1] + 0.0722 * palette[:, 0] ) return palette[np.argsort(luminosity)] def display_palette(palette: np.uint8, sort=True): """ Generates an image displaying given color palette. """ swatch_size = 100 num_colors = palette.shape[0] palette_image = np.zeros((swatch_size, swatch_size * num_colors, 3), dtype=np.uint8) if sort: palette = sort_by_brightness(palette) for i, color in enumerate(palette): palette_image[:, i * swatch_size : (i + 1) * swatch_size] = color return palette_image def extract_color_palette(img, k: int): """ Extracts color palette from the given image using k-means clustering. """ pixels = img.reshape((-1, 3)) pixels = np.float32(pixels) criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 10, 1.0) _, labels, centers = cv2.kmeans( pixels, k, None, criteria, 10, cv2.KMEANS_RANDOM_CENTERS ) palette = np.uint8(centers) return palette, labels def pixelate(img, pixel_size: int, blur=False, use_palette=False, k=8): """ Pixelates an image by reducing its pixel resolution and optionally applying blur effect and color quantization. """ palette = None if use_palette: palette, labels = extract_color_palette(img, k) res = palette[labels.flatten()] img = res.reshape((img.shape)) palette = display_palette(palette, sort=True) if blur: img = cv2.blur(img, (7, 7)) for i in range(0, img.shape[0], pixel_size): for j in range(0, img.shape[1], pixel_size): img[i : i + pixel_size, j : j + pixel_size] = img[i][j] return img, palette