HealthVision / app.py
kumar989's picture
Update app.py
11da077
raw
history blame
1.42 kB
import io
import os
import numpy as np
import streamlit as st
import requests
from PIL import Image
from model import classify
import cv2
@st.cache(allow_output_mutation=True)
# def get_model():
# return bone_frac()
# pred_model = get_model()
# pred_model=bone_frac()
def predict():
c=classify('tmp.jpg')
st.markdown('#### Predicted Captions:')
st.write(c)
st.title('Health Vision')
# img_url = st.text_input(label='Enter Image URL')
# if (img_url != "") and (img_url != None):
# img = Image.open(requests.get(img_url, stream=True).raw)
# img = img.convert('RGB')
# st.image(img)
# img.save('tmp.jpg')
# predict()
# os.remove('tmp.jpg')
hide_streamlit_style = """
<style>
#MainMenu {visibility: hidden;}
footer {visibility: hidden;}
</style>
"""
st.markdown(hide_streamlit_style, unsafe_allow_html=True)
# st.markdown('<center style="opacity: 70%">OR</center>', unsafe_allow_html=True)
img_upload = st.file_uploader(label='Upload Image', type=['jpg', 'png', 'jpeg'])
if img_upload != None:
img = img_upload.read()
img = Image.open(io.BytesIO(img))
img = img.convert('RGB')
img=np.asarray(img)
print(img)
# img=cv2.imread(img)
# img.save('tmp.jpg')
st.image(img)
c=classify(img)
st.markdown('#### Predicted Captions:')
st.write(c)
# predict()
# os.remove('tmp.jpg')