TextAnalizer / app.py
kumar989's picture
Update app.py
caf7e32
raw
history blame
445 Bytes
from transformers import pipeline
import gradio as gr
sentiment_analysis = pipeline("sentiment-analysis",model="siebert/sentiment-roberta-large-english")
# print(sentiment_analysis("I love this!"))
def model(a):
return sentiment_analysis(a)[0]
demo = gr.Interface(fn=model, inputs="text", outputs=gr.Label(num_top_classes=2))
demo.launch()
# import gradio as gr
# gr.Interface.load("models/siebert/sentiment-roberta-large-english").launch()