import cv2 import numpy as np import tensorflow as tf def bone_frac(img): img = cv2.resize(img,(224,224)) model = tf.keras.models.load_model("best_model.h5") result = model.predict(np.array([img])) op="" if result[0]<0.5: op="Normal" return op # img = cv2.imread(r"C:\Users\kumar\Downloads\WhatsApp Image 2023-04-17 at 7.20.40 PM.jpeg") # print(bone_frac(img)) # # bone_frac(img)