File size: 2,576 Bytes
0619ee4
 
 
1ea2673
0619ee4
1ea2673
0619ee4
1ea2673
 
 
0619ee4
 
 
1ea2673
4c6babf
 
1ea2673
 
 
 
 
 
 
 
 
 
 
 
 
 
 
314cccb
5590af0
 
 
9bea9d1
5590af0
 
1ea2673
 
 
 
 
 
 
 
 
 
 
 
 
 
314cccb
1ea2673
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7379471
1ea2673
 
 
 
 
 
 
 
244e6ad
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import os
import json
from langchain_groq import ChatGroq
from langchain import PromptTemplate
from qdrant_client import QdrantClient
from langchain.chains import RetrievalQA
from langchain.vectorstores import Qdrant
from fastapi.responses import HTMLResponse
from fastapi.staticfiles import StaticFiles
from fastapi.encoders import jsonable_encoder
from fastapi.templating import Jinja2Templates
from fastapi import FastAPI, Request, Form, Response
from langchain.embeddings import SentenceTransformerEmbeddings

os.environ["TRANSFORMERS_FORCE_CPU"] = "true"

app = FastAPI()
templates = Jinja2Templates(directory="templates")
app.mount("/static", StaticFiles(directory="static"), name="static")

config = {
    'max_new_tokens': 1024,
    'context_length': 2048,
    'repetition_penalty': 1.1,
    'temperature': 0.1,
    'top_k': 50,
    'top_p': 0.9,
    'stream': True,
    'threads': int(os.cpu_count() / 2)
}

api_key = os.environ.get("GROQ_API_KEY")

llm = ChatGroq(
    model="mixtral-8x7b-32768",
    api_key=api_key,
    )

print("LLM Initialized....")

prompt_template = """Use the following pieces of information to answer the user's question.
If you don't know the answer, just say that you don't know, don't try to make up an answer.

Context: {context}
Question: {question}

Only return the helpful answer below and nothing else.
Helpful answer:
"""

embeddings = SentenceTransformerEmbeddings(model_name="BAAI/bge-large-en")

url = "http://localhost:6333"

client = QdrantClient(
    url=url, prefer_grpc=False
)

db = Qdrant(client=client, embeddings=embeddings, collection_name="patent_database")

prompt = PromptTemplate(template=prompt_template, input_variables=['context', 'question'])

retriever = db.as_retriever(search_kwargs={"k": 3})

@app.get("/", response_class=HTMLResponse)
async def read_root(request: Request):
    return templates.TemplateResponse("index.html", {"request": request})

@app.post("/get_response")
async def get_response(query: str = Form(...)):
    chain_type_kwargs = {"prompt": prompt}
    qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever, return_source_documents=True, chain_type_kwargs=chain_type_kwargs, verbose=True)
    response = qa(query)
    print(response)
    answer = response['result']
    source_document = response['source_documents'][0].page_content
    doc = response['source_documents'][0].metadata['source']
    response_data = jsonable_encoder(json.dumps({"answer": answer, "source_document": source_document, "doc": doc}))

    res = Response(response_data)
    return res