patent / ingest.py
kushagrasharma-13's picture
Using docker image
0619ee4
raw
history blame contribute delete
855 Bytes
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.document_loaders import DirectoryLoader
from langchain_community.document_loaders import PyPDFLoader
from langchain_community.vectorstores import Qdrant
from langchain_community.embeddings import SentenceTransformerEmbeddings
embeddings = SentenceTransformerEmbeddings(model_name='BAAI/bge-large-en')
print(embeddings)
loader = DirectoryLoader('Data/', glob='110106081.pdf', show_progress=True, loader_cls=PyPDFLoader)\
documents = loader.load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
texts = text_splitter.split_documents(documents)
url = "http://localhost:6333/"
qdrant = Qdrant.from_documents(texts, embeddings, url=url, prefer_grpc=False, collection_name="patent_database")
print("Vector Database created")