kushagrasharma-13 commited on
Commit
c58f637
·
verified ·
1 Parent(s): dd27cc4

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -7
app.py CHANGED
@@ -1,16 +1,16 @@
1
  import os
2
  import json
3
  from langchain_groq import ChatGroq
4
- from langchain import PromptTemplate
5
  from qdrant_client import QdrantClient
6
  from langchain.chains import RetrievalQA
7
- from langchain.vectorstores import Qdrant
8
  from fastapi.responses import HTMLResponse
9
  from fastapi.staticfiles import StaticFiles
10
  from fastapi.encoders import jsonable_encoder
11
  from fastapi.templating import Jinja2Templates
12
  from fastapi import FastAPI, Request, Form, Response
13
- from langchain.embeddings import SentenceTransformerEmbeddings
14
 
15
  os.environ["TRANSFORMERS_FORCE_CPU"] = "true"
16
 
@@ -33,16 +33,14 @@ api_key = os.environ.get("API_KEY")
33
  llm = ChatGroq(
34
  model="mixtral-8x7b-32768",
35
  api_key=api_key,
36
- )
37
 
38
  print("LLM Initialized....")
39
 
40
  prompt_template = """Use the following pieces of information to answer the user's question.
41
  If you don't know the answer, just say that you don't know, don't try to make up an answer.
42
-
43
  Context: {context}
44
  Question: {question}
45
-
46
  Only return the helpful answer below and nothing else.
47
  Helpful answer:
48
  """
@@ -77,4 +75,4 @@ async def get_response(query: str = Form(...)):
77
  response_data = jsonable_encoder(json.dumps({"answer": answer, "source_document": source_document, "doc": doc}))
78
 
79
  res = Response(response_data)
80
- return res
 
1
  import os
2
  import json
3
  from langchain_groq import ChatGroq
4
+ from langchain_core.prompts import PromptTemplate
5
  from qdrant_client import QdrantClient
6
  from langchain.chains import RetrievalQA
7
+ from langchain_community.vectorstores import Qdrant
8
  from fastapi.responses import HTMLResponse
9
  from fastapi.staticfiles import StaticFiles
10
  from fastapi.encoders import jsonable_encoder
11
  from fastapi.templating import Jinja2Templates
12
  from fastapi import FastAPI, Request, Form, Response
13
+ from langchain_community.embeddings import SentenceTransformerEmbeddings
14
 
15
  os.environ["TRANSFORMERS_FORCE_CPU"] = "true"
16
 
 
33
  llm = ChatGroq(
34
  model="mixtral-8x7b-32768",
35
  api_key=api_key,
36
+ )
37
 
38
  print("LLM Initialized....")
39
 
40
  prompt_template = """Use the following pieces of information to answer the user's question.
41
  If you don't know the answer, just say that you don't know, don't try to make up an answer.
 
42
  Context: {context}
43
  Question: {question}
 
44
  Only return the helpful answer below and nothing else.
45
  Helpful answer:
46
  """
 
75
  response_data = jsonable_encoder(json.dumps({"answer": answer, "source_document": source_document, "doc": doc}))
76
 
77
  res = Response(response_data)
78
+ return res