import os import json from langchain_groq import ChatGroq from langchain_core.prompts import PromptTemplate from qdrant_client import QdrantClient from langchain.chains import RetrievalQA from langchain_community.vectorstores import Qdrant from fastapi.responses import HTMLResponse from fastapi.staticfiles import StaticFiles from fastapi.encoders import jsonable_encoder from fastapi.templating import Jinja2Templates from fastapi import FastAPI, Request, Form, Response from langchain_community.embeddings import SentenceTransformerEmbeddings os.environ["TRANSFORMERS_FORCE_CPU"] = "true" app = FastAPI() templates = Jinja2Templates(directory="templates") config = { 'max_new_tokens': 1024, 'context_length': 2048, 'repetition_penalty': 1.1, 'temperature': 0.1, 'top_k': 50, 'top_p': 0.9, 'stream': True, 'threads': int(os.cpu_count() / 2) } api_key = os.environ.get("API_KEY") llm = ChatGroq( model="mixtral-8x7b-32768", api_key=api_key, ) print("LLM Initialized....") prompt_template = """Use the following pieces of information to answer the user's question. If you don't know the answer, just say that you don't know, don't try to make up an answer. Context: {context} Question: {question} Only return the helpful answer below and nothing else. Helpful answer: """ embeddings = SentenceTransformerEmbeddings(model_name="BAAI/bge-large-en") url = os.environ.get("INSTANCE_URL") client = QdrantClient( url=url, prefer_grpc=False ) db = Qdrant(client=client, embeddings=embeddings, collection_name="patent_database") prompt = PromptTemplate(template=prompt_template, input_variables=['context', 'question']) retriever = db.as_retriever(search_kwargs={"k": 3}) @app.get("/", response_class=HTMLResponse) async def read_root(request: Request): return templates.TemplateResponse("index.html", {"request": request}) @app.post("/get_response") async def get_response(query: str = Form(...)): chain_type_kwargs = {"prompt": prompt} qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever, return_source_documents=True, chain_type_kwargs=chain_type_kwargs, verbose=True) response = qa(query) print(response) answer = response['result'] source_document = response['source_documents'][0].page_content doc = response['source_documents'][0].metadata['source'] response_data = jsonable_encoder(json.dumps({"answer": answer, "source_document": source_document, "doc": doc})) res = Response(response_data) return res