kushbhargav commited on
Commit
c1bfd08
·
verified ·
1 Parent(s): afef0fd

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +414 -414
app.py CHANGED
@@ -1,414 +1,414 @@
1
- import gradio as gr
2
- import spaces
3
- from gradio_litmodel3d import LitModel3D
4
-
5
- import os
6
- import shutil
7
- os.environ['SPCONV_ALGO'] = 'native'
8
- from typing import *
9
- import torch
10
- import numpy as np
11
- import imageio
12
- from easydict import EasyDict as edict
13
- from PIL import Image
14
- from trellis.pipelines import TrellisImageTo3DPipeline
15
- from trellis.representations import Gaussian, MeshExtractResult
16
- from trellis.utils import render_utils, postprocessing_utils
17
-
18
-
19
- MAX_SEED = np.iinfo(np.int32).max
20
- TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
21
- os.makedirs(TMP_DIR, exist_ok=True)
22
-
23
-
24
- def start_session(req: gr.Request):
25
- user_dir = os.path.join(TMP_DIR, str(req.session_hash))
26
- os.makedirs(user_dir, exist_ok=True)
27
-
28
-
29
- def end_session(req: gr.Request):
30
- user_dir = os.path.join(TMP_DIR, str(req.session_hash))
31
- shutil.rmtree(user_dir)
32
-
33
-
34
- def preprocess_image(image: Image.Image) -> Image.Image:
35
- """
36
- Preprocess the input image.
37
-
38
- Args:
39
- image (Image.Image): The input image.
40
-
41
- Returns:
42
- Image.Image: The preprocessed image.
43
- """
44
- processed_image = pipeline.preprocess_image(image)
45
- return processed_image
46
-
47
-
48
- def preprocess_images(images: List[Tuple[Image.Image, str]]) -> List[Image.Image]:
49
- """
50
- Preprocess a list of input images.
51
-
52
- Args:
53
- images (List[Tuple[Image.Image, str]]): The input images.
54
-
55
- Returns:
56
- List[Image.Image]: The preprocessed images.
57
- """
58
- images = [image[0] for image in images]
59
- processed_images = [pipeline.preprocess_image(image) for image in images]
60
- return processed_images
61
-
62
-
63
- def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
64
- return {
65
- 'gaussian': {
66
- **gs.init_params,
67
- '_xyz': gs._xyz.cpu().numpy(),
68
- '_features_dc': gs._features_dc.cpu().numpy(),
69
- '_scaling': gs._scaling.cpu().numpy(),
70
- '_rotation': gs._rotation.cpu().numpy(),
71
- '_opacity': gs._opacity.cpu().numpy(),
72
- },
73
- 'mesh': {
74
- 'vertices': mesh.vertices.cpu().numpy(),
75
- 'faces': mesh.faces.cpu().numpy(),
76
- },
77
- }
78
-
79
-
80
- def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]:
81
- gs = Gaussian(
82
- aabb=state['gaussian']['aabb'],
83
- sh_degree=state['gaussian']['sh_degree'],
84
- mininum_kernel_size=state['gaussian']['mininum_kernel_size'],
85
- scaling_bias=state['gaussian']['scaling_bias'],
86
- opacity_bias=state['gaussian']['opacity_bias'],
87
- scaling_activation=state['gaussian']['scaling_activation'],
88
- )
89
- gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda')
90
- gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda')
91
- gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda')
92
- gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda')
93
- gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda')
94
-
95
- mesh = edict(
96
- vertices=torch.tensor(state['mesh']['vertices'], device='cuda'),
97
- faces=torch.tensor(state['mesh']['faces'], device='cuda'),
98
- )
99
-
100
- return gs, mesh
101
-
102
-
103
- def get_seed(randomize_seed: bool, seed: int) -> int:
104
- """
105
- Get the random seed.
106
- """
107
- return np.random.randint(0, MAX_SEED) if randomize_seed else seed
108
-
109
-
110
- @spaces.GPU
111
- def image_to_3d(
112
- image: Image.Image,
113
- multiimages: List[Tuple[Image.Image, str]],
114
- is_multiimage: bool,
115
- seed: int,
116
- ss_guidance_strength: float,
117
- ss_sampling_steps: int,
118
- slat_guidance_strength: float,
119
- slat_sampling_steps: int,
120
- multiimage_algo: Literal["multidiffusion", "stochastic"],
121
- req: gr.Request,
122
- ) -> Tuple[dict, str]:
123
- """
124
- Convert an image to a 3D model.
125
-
126
- Args:
127
- image (Image.Image): The input image.
128
- multiimages (List[Tuple[Image.Image, str]]): The input images in multi-image mode.
129
- is_multiimage (bool): Whether is in multi-image mode.
130
- seed (int): The random seed.
131
- ss_guidance_strength (float): The guidance strength for sparse structure generation.
132
- ss_sampling_steps (int): The number of sampling steps for sparse structure generation.
133
- slat_guidance_strength (float): The guidance strength for structured latent generation.
134
- slat_sampling_steps (int): The number of sampling steps for structured latent generation.
135
- multiimage_algo (Literal["multidiffusion", "stochastic"]): The algorithm for multi-image generation.
136
-
137
- Returns:
138
- dict: The information of the generated 3D model.
139
- str: The path to the video of the 3D model.
140
- """
141
- user_dir = os.path.join(TMP_DIR, str(req.session_hash))
142
- if not is_multiimage:
143
- outputs = pipeline.run(
144
- image,
145
- seed=seed,
146
- formats=["gaussian", "mesh"],
147
- preprocess_image=False,
148
- sparse_structure_sampler_params={
149
- "steps": ss_sampling_steps,
150
- "cfg_strength": ss_guidance_strength,
151
- },
152
- slat_sampler_params={
153
- "steps": slat_sampling_steps,
154
- "cfg_strength": slat_guidance_strength,
155
- },
156
- )
157
- else:
158
- outputs = pipeline.run_multi_image(
159
- [image[0] for image in multiimages],
160
- seed=seed,
161
- formats=["gaussian", "mesh"],
162
- preprocess_image=False,
163
- sparse_structure_sampler_params={
164
- "steps": ss_sampling_steps,
165
- "cfg_strength": ss_guidance_strength,
166
- },
167
- slat_sampler_params={
168
- "steps": slat_sampling_steps,
169
- "cfg_strength": slat_guidance_strength,
170
- },
171
- mode=multiimage_algo,
172
- )
173
- video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
174
- video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
175
- video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
176
- video_path = os.path.join(user_dir, 'sample.mp4')
177
- imageio.mimsave(video_path, video, fps=15)
178
- state = pack_state(outputs['gaussian'][0], outputs['mesh'][0])
179
- torch.cuda.empty_cache()
180
- return state, video_path
181
-
182
-
183
- @spaces.GPU(duration=90)
184
- def extract_glb(
185
- state: dict,
186
- mesh_simplify: float,
187
- texture_size: int,
188
- req: gr.Request,
189
- ) -> Tuple[str, str]:
190
- """
191
- Extract a GLB file from the 3D model.
192
-
193
- Args:
194
- state (dict): The state of the generated 3D model.
195
- mesh_simplify (float): The mesh simplification factor.
196
- texture_size (int): The texture resolution.
197
-
198
- Returns:
199
- str: The path to the extracted GLB file.
200
- """
201
- user_dir = os.path.join(TMP_DIR, str(req.session_hash))
202
- gs, mesh = unpack_state(state)
203
- glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
204
- glb_path = os.path.join(user_dir, 'sample.glb')
205
- glb.export(glb_path)
206
- torch.cuda.empty_cache()
207
- return glb_path, glb_path
208
-
209
-
210
- @spaces.GPU
211
- def extract_gaussian(state: dict, req: gr.Request) -> Tuple[str, str]:
212
- """
213
- Extract a Gaussian file from the 3D model.
214
-
215
- Args:
216
- state (dict): The state of the generated 3D model.
217
-
218
- Returns:
219
- str: The path to the extracted Gaussian file.
220
- """
221
- user_dir = os.path.join(TMP_DIR, str(req.session_hash))
222
- gs, _ = unpack_state(state)
223
- gaussian_path = os.path.join(user_dir, 'sample.ply')
224
- gs.save_ply(gaussian_path)
225
- torch.cuda.empty_cache()
226
- return gaussian_path, gaussian_path
227
-
228
-
229
- def prepare_multi_example() -> List[Image.Image]:
230
- multi_case = list(set([i.split('_')[0] for i in os.listdir("assets/example_multi_image")]))
231
- images = []
232
- for case in multi_case:
233
- _images = []
234
- for i in range(1, 4):
235
- img = Image.open(f'assets/example_multi_image/{case}_{i}.png')
236
- W, H = img.size
237
- img = img.resize((int(W / H * 512), 512))
238
- _images.append(np.array(img))
239
- images.append(Image.fromarray(np.concatenate(_images, axis=1)))
240
- return images
241
-
242
-
243
- def split_image(image: Image.Image) -> List[Image.Image]:
244
- """
245
- Split an image into multiple views.
246
- """
247
- image = np.array(image)
248
- alpha = image[..., 3]
249
- alpha = np.any(alpha>0, axis=0)
250
- start_pos = np.where(~alpha[:-1] & alpha[1:])[0].tolist()
251
- end_pos = np.where(alpha[:-1] & ~alpha[1:])[0].tolist()
252
- images = []
253
- for s, e in zip(start_pos, end_pos):
254
- images.append(Image.fromarray(image[:, s:e+1]))
255
- return [preprocess_image(image) for image in images]
256
-
257
-
258
- with gr.Blocks(delete_cache=(600, 600)) as demo:
259
- gr.Markdown("""
260
- ## Image to 3D Asset with [TRELLIS](https://trellis3d.github.io/)
261
- * Upload an image and click "Generate" to create a 3D asset. If the image has alpha channel, it be used as the mask. Otherwise, we use `rembg` to remove the background.
262
- * If you find the generated 3D asset satisfactory, click "Extract GLB" to extract the GLB file and download it.
263
-
264
- ✨New: 1) Experimental multi-image support. 2) Gaussian file extraction.
265
- """)
266
-
267
- with gr.Row():
268
- with gr.Column():
269
- with gr.Tabs() as input_tabs:
270
- with gr.Tab(label="Single Image", id=0) as single_image_input_tab:
271
- image_prompt = gr.Image(label="Image Prompt", format="png", image_mode="RGBA", type="pil", height=300)
272
- with gr.Tab(label="Multiple Images", id=1) as multiimage_input_tab:
273
- multiimage_prompt = gr.Gallery(label="Image Prompt", format="png", type="pil", height=300, columns=3)
274
- gr.Markdown("""
275
- Input different views of the object in separate images.
276
-
277
- *NOTE: this is an experimental algorithm without training a specialized model. It may not produce the best results for all images, especially those having different poses or inconsistent details.*
278
- """)
279
-
280
- with gr.Accordion(label="Generation Settings", open=False):
281
- seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1)
282
- randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
283
- gr.Markdown("Stage 1: Sparse Structure Generation")
284
- with gr.Row():
285
- ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1)
286
- ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
287
- gr.Markdown("Stage 2: Structured Latent Generation")
288
- with gr.Row():
289
- slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1)
290
- slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
291
- multiimage_algo = gr.Radio(["stochastic", "multidiffusion"], label="Multi-image Algorithm", value="stochastic")
292
-
293
- generate_btn = gr.Button("Generate")
294
-
295
- with gr.Accordion(label="GLB Extraction Settings", open=False):
296
- mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01)
297
- texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
298
-
299
- with gr.Row():
300
- extract_glb_btn = gr.Button("Extract GLB", interactive=False)
301
- extract_gs_btn = gr.Button("Extract Gaussian", interactive=False)
302
- gr.Markdown("""
303
- *NOTE: Gaussian file can be very large (~50MB), it will take a while to display and download.*
304
- """)
305
-
306
- with gr.Column():
307
- video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300)
308
- model_output = LitModel3D(label="Extracted GLB/Gaussian", exposure=10.0, height=300)
309
-
310
- with gr.Row():
311
- download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
312
- download_gs = gr.DownloadButton(label="Download Gaussian", interactive=False)
313
-
314
- is_multiimage = gr.State(False)
315
- output_buf = gr.State()
316
-
317
- # Example images at the bottom of the page
318
- with gr.Row() as single_image_example:
319
- examples = gr.Examples(
320
- examples=[
321
- f'assets/example_image/{image}'
322
- for image in os.listdir("assets/example_image")
323
- ],
324
- inputs=[image_prompt],
325
- fn=preprocess_image,
326
- outputs=[image_prompt],
327
- run_on_click=True,
328
- examples_per_page=64,
329
- )
330
- with gr.Row(visible=False) as multiimage_example:
331
- examples_multi = gr.Examples(
332
- examples=prepare_multi_example(),
333
- inputs=[image_prompt],
334
- fn=split_image,
335
- outputs=[multiimage_prompt],
336
- run_on_click=True,
337
- examples_per_page=8,
338
- )
339
-
340
- # Handlers
341
- demo.load(start_session)
342
- demo.unload(end_session)
343
-
344
- single_image_input_tab.select(
345
- lambda: tuple([False, gr.Row.update(visible=True), gr.Row.update(visible=False)]),
346
- outputs=[is_multiimage, single_image_example, multiimage_example]
347
- )
348
- multiimage_input_tab.select(
349
- lambda: tuple([True, gr.Row.update(visible=False), gr.Row.update(visible=True)]),
350
- outputs=[is_multiimage, single_image_example, multiimage_example]
351
- )
352
-
353
- image_prompt.upload(
354
- preprocess_image,
355
- inputs=[image_prompt],
356
- outputs=[image_prompt],
357
- )
358
- multiimage_prompt.upload(
359
- preprocess_images,
360
- inputs=[multiimage_prompt],
361
- outputs=[multiimage_prompt],
362
- )
363
-
364
- generate_btn.click(
365
- get_seed,
366
- inputs=[randomize_seed, seed],
367
- outputs=[seed],
368
- ).then(
369
- image_to_3d,
370
- inputs=[image_prompt, multiimage_prompt, is_multiimage, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps, multiimage_algo],
371
- outputs=[output_buf, video_output],
372
- ).then(
373
- lambda: tuple([gr.Button(interactive=True), gr.Button(interactive=True)]),
374
- outputs=[extract_glb_btn, extract_gs_btn],
375
- )
376
-
377
- video_output.clear(
378
- lambda: tuple([gr.Button(interactive=False), gr.Button(interactive=False)]),
379
- outputs=[extract_glb_btn, extract_gs_btn],
380
- )
381
-
382
- extract_glb_btn.click(
383
- extract_glb,
384
- inputs=[output_buf, mesh_simplify, texture_size],
385
- outputs=[model_output, download_glb],
386
- ).then(
387
- lambda: gr.Button(interactive=True),
388
- outputs=[download_glb],
389
- )
390
-
391
- extract_gs_btn.click(
392
- extract_gaussian,
393
- inputs=[output_buf],
394
- outputs=[model_output, download_gs],
395
- ).then(
396
- lambda: gr.Button(interactive=True),
397
- outputs=[download_gs],
398
- )
399
-
400
- model_output.clear(
401
- lambda: gr.Button(interactive=False),
402
- outputs=[download_glb],
403
- )
404
-
405
-
406
- # Launch the Gradio app
407
- if __name__ == "__main__":
408
- pipeline = TrellisImageTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-image-large")
409
- pipeline.cuda()
410
- try:
411
- pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8))) # Preload rembg
412
- except:
413
- pass
414
- demo.launch()
 
1
+ import gradio as gr
2
+ import spaces
3
+ from gradio_litmodel3d import LitModel3D
4
+
5
+ import os
6
+ import shutil
7
+ os.environ['SPCONV_ALGO'] = 'native'
8
+ from typing import *
9
+ import torch
10
+ import numpy as np
11
+ import imageio
12
+ from easydict import EasyDict as edict
13
+ from PIL import Image
14
+ from trellis.pipelines import TrellisImageTo3DPipeline
15
+ from trellis.representations import Gaussian, MeshExtractResult
16
+ from trellis.utils import render_utils, postprocessing_utils
17
+
18
+
19
+ MAX_SEED = np.iinfo(np.int32).max
20
+ TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
21
+ os.makedirs(TMP_DIR, exist_ok=True)
22
+
23
+
24
+ def start_session(req: gr.Request):
25
+ user_dir = os.path.join(TMP_DIR, str(req.session_hash))
26
+ os.makedirs(user_dir, exist_ok=True)
27
+
28
+
29
+ def end_session(req: gr.Request):
30
+ user_dir = os.path.join(TMP_DIR, str(req.session_hash))
31
+ shutil.rmtree(user_dir)
32
+
33
+
34
+ def preprocess_image(image: Image.Image) -> Image.Image:
35
+ """
36
+ Preprocess the input image.
37
+
38
+ Args:
39
+ image (Image.Image): The input image.
40
+
41
+ Returns:
42
+ Image.Image: The preprocessed image.
43
+ """
44
+ processed_image = pipeline.preprocess_image(image)
45
+ return processed_image
46
+
47
+
48
+ def preprocess_images(images: List[Tuple[Image.Image, str]]) -> List[Image.Image]:
49
+ """
50
+ Preprocess a list of input images.
51
+
52
+ Args:
53
+ images (List[Tuple[Image.Image, str]]): The input images.
54
+
55
+ Returns:
56
+ List[Image.Image]: The preprocessed images.
57
+ """
58
+ images = [image[0] for image in images]
59
+ processed_images = [pipeline.preprocess_image(image) for image in images]
60
+ return processed_images
61
+
62
+
63
+ def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
64
+ return {
65
+ 'gaussian': {
66
+ **gs.init_params,
67
+ '_xyz': gs._xyz.cpu().numpy(),
68
+ '_features_dc': gs._features_dc.cpu().numpy(),
69
+ '_scaling': gs._scaling.cpu().numpy(),
70
+ '_rotation': gs._rotation.cpu().numpy(),
71
+ '_opacity': gs._opacity.cpu().numpy(),
72
+ },
73
+ 'mesh': {
74
+ 'vertices': mesh.vertices.cpu().numpy(),
75
+ 'faces': mesh.faces.cpu().numpy(),
76
+ },
77
+ }
78
+
79
+
80
+ def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]:
81
+ gs = Gaussian(
82
+ aabb=state['gaussian']['aabb'],
83
+ sh_degree=state['gaussian']['sh_degree'],
84
+ mininum_kernel_size=state['gaussian']['mininum_kernel_size'],
85
+ scaling_bias=state['gaussian']['scaling_bias'],
86
+ opacity_bias=state['gaussian']['opacity_bias'],
87
+ scaling_activation=state['gaussian']['scaling_activation'],
88
+ )
89
+ gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda')
90
+ gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda')
91
+ gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda')
92
+ gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda')
93
+ gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda')
94
+
95
+ mesh = edict(
96
+ vertices=torch.tensor(state['mesh']['vertices'], device='cuda'),
97
+ faces=torch.tensor(state['mesh']['faces'], device='cuda'),
98
+ )
99
+
100
+ return gs, mesh
101
+
102
+
103
+ def get_seed(randomize_seed: bool, seed: int) -> int:
104
+ """
105
+ Get the random seed.
106
+ """
107
+ return np.random.randint(0, MAX_SEED) if randomize_seed else seed
108
+
109
+
110
+ @spaces.GPU
111
+ def image_to_3d(
112
+ image: Image.Image,
113
+ multiimages: List[Tuple[Image.Image, str]],
114
+ is_multiimage: bool,
115
+ seed: int,
116
+ ss_guidance_strength: float,
117
+ ss_sampling_steps: int,
118
+ slat_guidance_strength: float,
119
+ slat_sampling_steps: int,
120
+ multiimage_algo: Literal["multidiffusion", "stochastic"],
121
+ req: gr.Request,
122
+ ) -> Tuple[dict, str]:
123
+ """
124
+ Convert an image to a 3D model.
125
+
126
+ Args:
127
+ image (Image.Image): The input image.
128
+ multiimages (List[Tuple[Image.Image, str]]): The input images in multi-image mode.
129
+ is_multiimage (bool): Whether is in multi-image mode.
130
+ seed (int): The random seed.
131
+ ss_guidance_strength (float): The guidance strength for sparse structure generation.
132
+ ss_sampling_steps (int): The number of sampling steps for sparse structure generation.
133
+ slat_guidance_strength (float): The guidance strength for structured latent generation.
134
+ slat_sampling_steps (int): The number of sampling steps for structured latent generation.
135
+ multiimage_algo (Literal["multidiffusion", "stochastic"]): The algorithm for multi-image generation.
136
+
137
+ Returns:
138
+ dict: The information of the generated 3D model.
139
+ str: The path to the video of the 3D model.
140
+ """
141
+ user_dir = os.path.join(TMP_DIR, str(req.session_hash))
142
+ if not is_multiimage:
143
+ outputs = pipeline.run(
144
+ image,
145
+ seed=seed,
146
+ formats=["gaussian", "mesh"],
147
+ preprocess_image=False,
148
+ sparse_structure_sampler_params={
149
+ "steps": ss_sampling_steps,
150
+ "cfg_strength": ss_guidance_strength,
151
+ },
152
+ slat_sampler_params={
153
+ "steps": slat_sampling_steps,
154
+ "cfg_strength": slat_guidance_strength,
155
+ },
156
+ )
157
+ else:
158
+ outputs = pipeline.run_multi_image(
159
+ [image[0] for image in multiimages],
160
+ seed=seed,
161
+ formats=["gaussian", "mesh"],
162
+ preprocess_image=False,
163
+ sparse_structure_sampler_params={
164
+ "steps": ss_sampling_steps,
165
+ "cfg_strength": ss_guidance_strength,
166
+ },
167
+ slat_sampler_params={
168
+ "steps": slat_sampling_steps,
169
+ "cfg_strength": slat_guidance_strength,
170
+ },
171
+ mode=multiimage_algo,
172
+ )
173
+ video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
174
+ video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
175
+ video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
176
+ video_path = os.path.join(user_dir, 'sample.mp4')
177
+ imageio.mimsave(video_path, video, fps=15)
178
+ state = pack_state(outputs['gaussian'][0], outputs['mesh'][0])
179
+ torch.cuda.empty_cache()
180
+ return state, video_path
181
+
182
+
183
+ @spaces.GPU(duration=90)
184
+ def extract_glb(
185
+ state: dict,
186
+ mesh_simplify: float,
187
+ texture_size: int,
188
+ req: gr.Request,
189
+ ) -> Tuple[str, str]:
190
+ """
191
+ Extract a GLB file from the 3D model.
192
+
193
+ Args:
194
+ state (dict): The state of the generated 3D model.
195
+ mesh_simplify (float): The mesh simplification factor.
196
+ texture_size (int): The texture resolution.
197
+
198
+ Returns:
199
+ str: The path to the extracted GLB file.
200
+ """
201
+ user_dir = os.path.join(TMP_DIR, str(req.session_hash))
202
+ gs, mesh = unpack_state(state)
203
+ glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
204
+ glb_path = os.path.join(user_dir, 'sample.glb')
205
+ glb.export(glb_path)
206
+ torch.cuda.empty_cache()
207
+ return glb_path, glb_path
208
+
209
+
210
+ @spaces.GPU
211
+ def extract_gaussian(state: dict, req: gr.Request) -> Tuple[str, str]:
212
+ """
213
+ Extract a Gaussian file from the 3D model.
214
+
215
+ Args:
216
+ state (dict): The state of the generated 3D model.
217
+
218
+ Returns:
219
+ str: The path to the extracted Gaussian file.
220
+ """
221
+ user_dir = os.path.join(TMP_DIR, str(req.session_hash))
222
+ gs, _ = unpack_state(state)
223
+ gaussian_path = os.path.join(user_dir, 'sample.ply')
224
+ gs.save_ply(gaussian_path)
225
+ torch.cuda.empty_cache()
226
+ return gaussian_path, gaussian_path
227
+
228
+
229
+ def prepare_multi_example() -> List[Image.Image]:
230
+ multi_case = list(set([i.split('_')[0] for i in os.listdir("assets/example_multi_image")]))
231
+ images = []
232
+ for case in multi_case:
233
+ _images = []
234
+ for i in range(1, 4):
235
+ img = Image.open(f'assets/example_multi_image/{case}_{i}.png')
236
+ W, H = img.size
237
+ img = img.resize((int(W / H * 512), 512))
238
+ _images.append(np.array(img))
239
+ images.append(Image.fromarray(np.concatenate(_images, axis=1)))
240
+ return images
241
+
242
+
243
+ def split_image(image: Image.Image) -> List[Image.Image]:
244
+ """
245
+ Split an image into multiple views.
246
+ """
247
+ image = np.array(image)
248
+ alpha = image[..., 3]
249
+ alpha = np.any(alpha>0, axis=0)
250
+ start_pos = np.where(~alpha[:-1] & alpha[1:])[0].tolist()
251
+ end_pos = np.where(alpha[:-1] & ~alpha[1:])[0].tolist()
252
+ images = []
253
+ for s, e in zip(start_pos, end_pos):
254
+ images.append(Image.fromarray(image[:, s:e+1]))
255
+ return [preprocess_image(image) for image in images]
256
+
257
+
258
+ with gr.Blocks(delete_cache=(600, 600)) as demo:
259
+ gr.Markdown("""
260
+ ## Image to 3D Asset
261
+ * Upload an image and click "Generate" to create a 3D asset. If the image has alpha channel, it be used as the mask. Otherwise, we use `rembg` to remove the background.
262
+ * If you find the generated 3D asset satisfactory, click "Extract GLB" to extract the GLB file and download it.
263
+
264
+ ✨New: 1) Experimental multi-image support. 2) Gaussian file extraction.
265
+ """)
266
+
267
+ with gr.Row():
268
+ with gr.Column():
269
+ with gr.Tabs() as input_tabs:
270
+ with gr.Tab(label="Single Image", id=0) as single_image_input_tab:
271
+ image_prompt = gr.Image(label="Image Prompt", format="png", image_mode="RGBA", type="pil", height=300)
272
+ with gr.Tab(label="Multiple Images", id=1) as multiimage_input_tab:
273
+ multiimage_prompt = gr.Gallery(label="Image Prompt", format="png", type="pil", height=300, columns=3)
274
+ gr.Markdown("""
275
+ Input different views of the object in separate images.
276
+
277
+ *NOTE: this is an experimental algorithm without training a specialized model. It may not produce the best results for all images, especially those having different poses or inconsistent details.*
278
+ """)
279
+
280
+ with gr.Accordion(label="Generation Settings", open=False):
281
+ seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1)
282
+ randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
283
+ gr.Markdown("Stage 1: Sparse Structure Generation")
284
+ with gr.Row():
285
+ ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1)
286
+ ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
287
+ gr.Markdown("Stage 2: Structured Latent Generation")
288
+ with gr.Row():
289
+ slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1)
290
+ slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
291
+ multiimage_algo = gr.Radio(["stochastic", "multidiffusion"], label="Multi-image Algorithm", value="stochastic")
292
+
293
+ generate_btn = gr.Button("Generate")
294
+
295
+ with gr.Accordion(label="GLB Extraction Settings", open=False):
296
+ mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01)
297
+ texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
298
+
299
+ with gr.Row():
300
+ extract_glb_btn = gr.Button("Extract GLB", interactive=False)
301
+ extract_gs_btn = gr.Button("Extract Gaussian", interactive=False)
302
+ gr.Markdown("""
303
+ *NOTE: Gaussian file can be very large (~50MB), it will take a while to display and download.*
304
+ """)
305
+
306
+ with gr.Column():
307
+ video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300)
308
+ model_output = LitModel3D(label="Extracted GLB/Gaussian", exposure=10.0, height=300)
309
+
310
+ with gr.Row():
311
+ download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
312
+ download_gs = gr.DownloadButton(label="Download Gaussian", interactive=False)
313
+
314
+ is_multiimage = gr.State(False)
315
+ output_buf = gr.State()
316
+
317
+ # Example images at the bottom of the page
318
+ with gr.Row() as single_image_example:
319
+ examples = gr.Examples(
320
+ examples=[
321
+ f'assets/example_image/{image}'
322
+ for image in os.listdir("assets/example_image")
323
+ ],
324
+ inputs=[image_prompt],
325
+ fn=preprocess_image,
326
+ outputs=[image_prompt],
327
+ run_on_click=True,
328
+ examples_per_page=64,
329
+ )
330
+ with gr.Row(visible=False) as multiimage_example:
331
+ examples_multi = gr.Examples(
332
+ examples=prepare_multi_example(),
333
+ inputs=[image_prompt],
334
+ fn=split_image,
335
+ outputs=[multiimage_prompt],
336
+ run_on_click=True,
337
+ examples_per_page=8,
338
+ )
339
+
340
+ # Handlers
341
+ demo.load(start_session)
342
+ demo.unload(end_session)
343
+
344
+ single_image_input_tab.select(
345
+ lambda: tuple([False, gr.Row.update(visible=True), gr.Row.update(visible=False)]),
346
+ outputs=[is_multiimage, single_image_example, multiimage_example]
347
+ )
348
+ multiimage_input_tab.select(
349
+ lambda: tuple([True, gr.Row.update(visible=False), gr.Row.update(visible=True)]),
350
+ outputs=[is_multiimage, single_image_example, multiimage_example]
351
+ )
352
+
353
+ image_prompt.upload(
354
+ preprocess_image,
355
+ inputs=[image_prompt],
356
+ outputs=[image_prompt],
357
+ )
358
+ multiimage_prompt.upload(
359
+ preprocess_images,
360
+ inputs=[multiimage_prompt],
361
+ outputs=[multiimage_prompt],
362
+ )
363
+
364
+ generate_btn.click(
365
+ get_seed,
366
+ inputs=[randomize_seed, seed],
367
+ outputs=[seed],
368
+ ).then(
369
+ image_to_3d,
370
+ inputs=[image_prompt, multiimage_prompt, is_multiimage, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps, multiimage_algo],
371
+ outputs=[output_buf, video_output],
372
+ ).then(
373
+ lambda: tuple([gr.Button(interactive=True), gr.Button(interactive=True)]),
374
+ outputs=[extract_glb_btn, extract_gs_btn],
375
+ )
376
+
377
+ video_output.clear(
378
+ lambda: tuple([gr.Button(interactive=False), gr.Button(interactive=False)]),
379
+ outputs=[extract_glb_btn, extract_gs_btn],
380
+ )
381
+
382
+ extract_glb_btn.click(
383
+ extract_glb,
384
+ inputs=[output_buf, mesh_simplify, texture_size],
385
+ outputs=[model_output, download_glb],
386
+ ).then(
387
+ lambda: gr.Button(interactive=True),
388
+ outputs=[download_glb],
389
+ )
390
+
391
+ extract_gs_btn.click(
392
+ extract_gaussian,
393
+ inputs=[output_buf],
394
+ outputs=[model_output, download_gs],
395
+ ).then(
396
+ lambda: gr.Button(interactive=True),
397
+ outputs=[download_gs],
398
+ )
399
+
400
+ model_output.clear(
401
+ lambda: gr.Button(interactive=False),
402
+ outputs=[download_glb],
403
+ )
404
+
405
+
406
+ # Launch the Gradio app
407
+ if __name__ == "__main__":
408
+ pipeline = TrellisImageTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-image-large")
409
+ pipeline.cuda()
410
+ try:
411
+ pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8))) # Preload rembg
412
+ except:
413
+ pass
414
+ demo.launch()