kushinm commited on
Commit
17c016d
β€’
1 Parent(s): eb20cb6

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +80 -0
app.py ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from transformers import pipeline
3
+ from transformers import BlipProcessor, BlipForConditionalGeneration
4
+ from transformers import CLIPProcessor, CLIPModel
5
+ import torch
6
+ from PIL import Image
7
+ import requests
8
+ import os
9
+
10
+
11
+ device = "cuda" if torch.cuda.is_available() else "cpu"
12
+ model_id = "openai/clip-vit-base-patch16" # You can choose a different CLIP model from Hugging Face
13
+ clipprocessor = CLIPProcessor.from_pretrained(model_id)
14
+ clipmodel = CLIPModel.from_pretrained(model_id).to(device)
15
+
16
+
17
+ model_id = "Salesforce/blip-image-captioning-base" ## load modelID for BLIP
18
+ blipmodel = BlipForConditionalGeneration.from_pretrained(model_id)
19
+ blipprocessor = BlipProcessor.from_pretrained(model_id)
20
+
21
+
22
+ def evaluate_caption(image, caption):
23
+ # # Pre-process image
24
+ # image = processor(images=image, return_tensors="pt").to(device)
25
+
26
+ # # Tokenize and encode the caption
27
+ # text = processor(text=caption, return_tensors="pt").to(device)
28
+
29
+
30
+
31
+ blip_input = blipprocessor(image, return_tensors="pt")
32
+ out = blipmodel.generate(**blip_input,max_new_tokens=50)
33
+ blip_caption = blipprocessor.decode(out[0], skip_special_tokens=True)
34
+
35
+ inputs = clipprocessor(text=[caption,blip_caption], images=image, return_tensors="pt", padding=True)
36
+
37
+ similarity_score = clipmodel(**inputs).logits_per_image
38
+
39
+
40
+
41
+ # Convert score to a float
42
+ score = similarity_score.softmax(dim=1).detach().numpy()
43
+ print(score)
44
+ if score[0][0]>score[0][1]:
45
+ winner = "The first caption is the human"
46
+ else:
47
+ winner = "The second caption is the human"
48
+
49
+
50
+ return blip_caption,winner
51
+ # ,gr.Image(type="pil", value="mukherjee_kushin_WIDPICS1.jpg")
52
+
53
+
54
+ callback = gr.HuggingFaceDatasetSaver('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', "gradioTest")
55
+ with gr.Blocks() as demo:
56
+ im_path_str = 'n01677366_12918.JPEG'
57
+ im_path = gr.Textbox(label="Image fname",value=im_path_str,interactive=False, visible=False)
58
+ # fn=evaluate_caption,
59
+ # inputs=["image", "text"]
60
+
61
+ with gr.Column():
62
+ im = gr.Image(label="Target Image", interactive = False, type="pil",value =f'images/{im_path_str}',height=500)
63
+ caps = gr.Textbox(label="Player 1 Caption")
64
+ submit_btn = gr.Button("Submit!!")
65
+ # outputs=["text","text"],
66
+ with gr.Column():
67
+ out1 = gr.Textbox(label="Player 2 (Machine) Caption",interactive=False)
68
+ out2 = gr.Textbox(label="Winner",interactive=False)
69
+
70
+
71
+ # live=False,
72
+ # interpretation="default"
73
+ callback.setup([caps, out1, out2, im_path], "flagged_data_points")
74
+ # callback.flag([image, caption, blip_caption, winner])
75
+ submit_btn.click(fn = evaluate_caption,inputs = [im,caps], outputs = [out1, out2],api_name="test").success(lambda *args: callback.flag(args), [caps, out1, out2, im_path], None, preprocess=False)
76
+ # with gr.Row():
77
+ # btn = gr.Button("Flag")
78
+ # btn.click(lambda *args: callback.flag(args), [im, caps, out1, out2], None, preprocess=False)
79
+
80
+ demo.launch(debug=False)