File size: 2,284 Bytes
5149f5a
 
 
6d700e4
5149f5a
 
 
 
f9f9974
5149f5a
6d700e4
 
 
 
 
5149f5a
 
 
 
 
 
 
 
6d700e4
 
 
 
 
 
 
 
 
 
 
 
5149f5a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d700e4
 
 
5149f5a
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import numpy as np
from PIL import Image
import streamlit as st
from transformers import AutoTokenizer, ViTFeatureExtractor, VisionEncoderDecoderModel, GPT2Tokenizer, GPT2LMHeadModel

# Directory path to the saved model on Google Drive
model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
feature_extractor = ViTFeatureExtractor.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning")

# Load the pre-trained model and tokenizer
model_name = "gpt2"
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
model = GPT2LMHeadModel.from_pretrained(model_name)

def generate_captions(image):
    image = Image.open(image).convert("RGB")
    generated_caption = tokenizer.decode(model.generate(feature_extractor(image, return_tensors="pt").pixel_values.to("cpu"))[0])
    sentence = generated_caption
    text_to_remove = "<|endoftext|>"
    generated_caption = sentence.replace(text_to_remove, "")
    return generated_caption

# Define the Streamlit app
def generate_paragraph(prompt):
    # Tokenize the prompt
    input_ids = tokenizer.encode(prompt, return_tensors="pt")

    # Generate the paragraph
    output = model.generate(input_ids, max_length=200, num_return_sequences=1, early_stopping=True)

    # Decode the generated output into text
    paragraph = tokenizer.decode(output[0], skip_special_tokens=True)
    return paragraph
    
# create the Streamlit app
def app():
    st.title('Image from your Side, Trending Hashtags from our Side')

    st.write('Upload an image to see what we have in store.')

    # create file uploader
    uploaded_file = st.file_uploader("Got You Covered, Upload your wish!, magic on the Way! ", type=["jpg", "jpeg", "png"])

    # check if file has been uploaded
    if uploaded_file is not None:
        # load the image
        image = Image.open(uploaded_file).convert("RGB")

        # Image Captions
        string = generate_captions(uploaded_file)

        st.image(image, caption='The Uploaded File')
        st.write("First is first captions for your Photo : ", string)

        generated_paragraph = generate_paragraph(string)

        st.write(generated_paragraph)
# run the app
if __name__ == '__main__':
    app()